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ABSTRACT

We propose an appropriate approach of defining the linear complexities (LC) of sequences over unknown
symbol set. We are able to characterize those p-ary sequences whose A-tuple versions now over GF(p*) have
the same characteristic polynomial as the original with respect to any basis. This leads to a construction of p*-ary
sequences whose characteristic polynomial is essentially over GF(p). In addition, we can characterize those p*

-ary sequences whose characteristic polynomials are uniquely determined when symbols are represented as k-tuples

over GF(p) with respect to any basis.

I . Introduction frequency-hopping pattern (a FH sequence)
S={Afifs [s o fg~} with 6 frequency
slots. Then, one must decide the following
two choices to synthesize the linear feedback
shift register (LFSR) [2], [6] that can gen—
erate the next slots of the FH pattern. First,
he/she must choose an underlying algebraic

In a peer-to-peer frequency hopping (FH)
spread spectrum communication system, an
interceptor who can observe full frequency
band may try to synthesize the entire FH
pattern from some frequency slots succes—
sively observed. Assume that he observes a
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structure of the symbols of S. The symbols
of S can be regarded as elements of a finite
field or an integer residue ring, of size at
least 6. Second, he/she must choose a corre-
spondence between the elements of the alge-
braic structure and the symbols of S. If he

chooses Zg as an underlying algebraic struc-

ture, there will be 6! correspondences that
he can choose. On the other hand, if he
chooses GF(8), there will be 8!/2!
correspondences. After that, Berlekamp-
Massey (BM) algorithm [4] can be used to
synthesize the characteristic polynomial of S
over a finite field, and so can Reeds-Sloane
(RS) algorithm [5] be used over an integer
residue ring.

Let L be the linear complexity of an FH
pattern with specified algebraic structure and
symbol correspondence. When the interceptor
observes successive 2L frequency slots, and
the choices are matched, then he can suc-
cessfully synthesize the next FH slots forever
as far as FH patterns are used in the same
manner as the beginning. It is true in gen-
eral, therefore, from the view point of system
designers, that the FH pattern should be
changed before 2L slots are used in order
not to be tracked by others, and that the lin—
ear complexity of FH patterns should be as
large as possible, with whatever choices on
the underlying algebraic structures and sym-—
bol correspondence might be assumed by
others.

Section II illustrates the fact that the linear
complexity of a sequence over arbitrary sym-
bols may vary according to the above-men-—
tioned two choices. This leads to a way to
define the linear complexity of sequences
over arbitrary symbols.

In Section III, we discuss a construction of

sequences over GF(p*) by taking successive

k-tuples of a given sequence over GF(p).
Here, one concern is the choice of basis
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when we lift up every k-tuple over GF(p)
to GF(p*). Since the change of basis corre-
sponds to a symbol permutation, the resulting
sequences over GF(pk) may well have dif-
ferent characteristic polynomials and different

complexities according to the choice of basis.
We are able to characterize in also Section

I those p-ary sequences whose £&-tuple
versions now over GF(p*) have the same
characteristic polynomial as the original with
respect to any basis. This leads to a con-
struction of pk—ary sequences whose charac-
teristic polynomial is essentially over GF(p).
In addition, we can characterize those pk—ary

sequences Wwhose characteristic polynomials
are uniquely determined when symbols are

represented as kA-tuples over GF(p) with
repect to any basis. In particular, we show
that a binary sequence of period 27
(including de Bruijn sequences) and any of
its A-tuple versions over GF(2%) for any
positive integer % have the same character-
istic polynomial that is over GF(2). We also
show that the binary wm-sequence of period

2"—1 and any of its A-tuple versions over

GF(2%) for k relatively prime to 7 have
the same characteristic polynomial that is

over GF(2).

II. Linear complexity of sequences
over unknown symbol sets

Let S={s,, where n=1,2,-, be a se-
quence over an unknown symbol set of size
m, whose linear complexity (and possibly,
characteristic polynomial) is to be determined
(and synthesized, respectively). Then the LC
of S may vary according to the following
choices: (1) an underlying algebraic structure
of the symbols of the sequence (ii) a corre-
spondence between the elements of the alge-
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braic structure and the symbols.

When we determine the L.C of S over Z,,
we first choose an ordering of elements of
symbols of the sequence, and then correspond
each term, s, to an element of Z, accord-
ing to this ordering. This completes both

choices, and RS algorithm can now be
applied.

When we determine it over GF(p*), where
p is a prime and kam, we need to set up
the correspondence between the symbols and
the elements of GF(p*). To this end, we
first correspond each term of S to an ele-
ment of Z, as before, and then represent

each non-negative integer as a p-ary &
-tuple as

k A
s (vy, 09,0, S0 that s,= Z::]vﬁk"'.(l)

Then, we interpret each /A-tuple with respect

to a fixed basis _a=~(a,ay ,a,) of

GF(p*) over GF(p). One choice could be
so called a polynomial basis of the form

(1, a, &%, ~, a* Y, )

where a€GF(p*) is a primitive element.
This completes the symbol correspondence. In
this paper, we will primarily use this method
given in Eq. (1) and anv fixed basis for a
correspondence between the set of non-neg-
ative integers from (0 to m—1. Selecting a
polynomial basis would correspond to the
choice of a primitive element o, or equiv-
alently, a primitive polynomial of degree #
over GF(p).

When k=1, it is well known that both
BM and RS algorithms produces the same
result. When =2, BM algorithm with a
choice of a basis must be used to determine
the LC over GF(p%).

Note that selecting a different basis in the
above discussion corresponds to taking a
symbol permutation and using the same

basis. Let A be a kxk matrix over
GF(p*) with non-zero determinant which
transforms one basis into another. That is,
we let a’=A 8" for two basis @ and
B. Then a k-tuple v=(v,,,v,) over
GF(p) can be regarded as an element of
GF(p*) in two ways. Since val=vAR,
lifting up A-tuples v to GF(p*) with re-
spect to _g corresponds to lifting up vA (a
permuted version by A) to GF(p*) with
respect to _f3.

Example 1: A sequence S with period 64
is given by
0221212201111220012112022
11200001010110111020001060
1022120022001 2 ..

Table 1 shows the LC of S assuming vari-
ous algebraic structures of the symbols. L

Table 1. The LC of S of Example 1 over various
algebraic structures.

Over | GF(3)| GF(4){ GF(5) ZG GF(T)

1.C 60 64 61 63 64

Example 2: A sequence S with period 8

is given by
01376524 ..

Assuming that S is over GF(8), we have
applied BM algorithm to all the 8! sym-
bol-permuted versions of S. Similarly, over
Zg, we have applied RS algorithm, and the
results are summarized in Table 2. We note
that, over Zg, the LC can be as small as 2
for some symbol permutations. In fact, a se-
quence with LC=2 (which is a sym-
bol-permuted version of S over Zg) turned

out to be
76103254 .. L
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Table 2. The distribution of the LC of S of Example 2.

Leovery 1ol y s |6 7 tal
tota
GF(8)
No. of -

0| 0| o |2688|5376|3056] 8!
sequences

LCover Zg| 2 {1 314 | 5 6 7 |total
No. of

sequences

1281256 | 768 | 5888 (14848(18432) 8!

Example 3. An 8-ary sequence S with
period 63 is given by
1364146620111313363474
6146546776325033367325
1057543465533512436 ...

Each s, is represented as a binary 3-tuple

as defined in Eq. (1), and lifted up to GF(8)
using only the polynomial basis as given in
Eq. (2) with two different primitive elements.

It turned out that the LC with x*+x°+1 is

59 and that with x*+x+1 is 61. "
Example 4: For a sequence over
two-symbol alphabet, the LC based on BM
algorithm may be changed by %1 according
to 2 different correspondences of the symbols
with elements of GF(2). Recall that the
characteristic polynomial of the sequence
would have (or not have) the factor x+1
according to the interpretation of 0 and 1 as
they are (or as switched, respectively). n
From all these observations, we see that
the main concerns are the operations
(addition and multiplication) of the symbols
that are used in the LFSR. Fixing these two
operations over the symbols is equivalent to
fixing an algebraic structure with two oper—
ations and also a symbol correspondence.
Definition 5: The linear complexity (LC)
of a sequence S over an unknown symbol
set is the minimum LC of S over all possi-
ble algebraic structures and the symbol
correspondences. =
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. Construction of sequences over
GF(p*) whose characteristic

polynomial is over GF(p)

Let S={s,}, where #=1,2,"-, be a se-
quence over GF(p) where p is a prime, and
let % be a positive integer. Define a new se—
quence T(k S)={t}, where n=1,2,",
from S by regarding # consecutive terms of
S as a p-ary k-tuple, ¢, as follows:

by =88 ni1r 28 pobe1)e (3)
Then these p-ary k-tuples are lifted up to
GF(p*) with respect to some but fixed

basis. One simple choice is the polynomial
basis of GF(p*) as given in Eq. (2), but we
will not stick to it.

Proposition 6: The LFSR that generates a

sequence S={s,} over GF(p) also gen-

erates T(k, S) over GF(p*) as defined in
Eq. (3) regardless of the choice of basis. The
converse holds provided that the connection

polynomial that generates 7T over GEF(p*) is
essentially over GF(p).

Proof: With ¢; (i=1,2,,L) being
constants over GF(p), the first part is easily
observed by the fact that the linear re-

currence of S over GF(p) given by

L
Su= ;C’S n—1i

directly applies to the same linear recurrence
relation of 7Y%, S) over GF(p*) where

I
(8508 e 1e ™ sS waa )= Zlcl(sn—z'-smhu'“vs At ho1-e

Here, the LFSR operations are only the vec-—
tor addition and scalar multiplication of

GF(p*) over GF(p), and hence the choice
of basis has nothing to do with the LFSR

operations for T over GF( pk). Conversely,

the characteristic polynomial for 7T should be

www.dbpia.co.kr
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over GF(p) for the choice of basis not to
affect the LFSR operations. L

Example 7: A ternary sequence S with
period 26 is given by
0011102112101002220122
120200 ...

Then the sequences 7Y3,S) and 7(4,S)
according to Eq. (3) are given by the follow—
ing:

7(3,S) = {001 011 111 110 102 021 211 112
121 210 ...},

7(4,S) = {0011 0111 1110 1102 1021 0211
2112 1121 1210 2101 ..}.

Note that both 7’s as well as S are gen-

erated. by the LFSR shown in Fig. 1 with .

connection coefficients over GF(3). L]

M

>
L

Fig. 1. The LFSR generating S and 7T’s of
Example 7.

Proposition 6 does not guarantee that the
LFSR for 7(k S) over GF(p*), k=2, is
necessarily the shortest possible even if it is
the shortest for S over GF(p). In fact, the
shortest LFSR for T(k,S) over GF(p"),
k=2, (and hence the LC of 7) cannot be
uniquely determined wunless a basis of
GF(p*) is fixed. Following example shows
this.

Example 8: (a) A binary sequence S
with period 63 is given by
1100100000111111101010010010011010101110110
11011101001111110010....

The LC of S, over GF(2) is 62, but that of
T(3,S;) over GF(2%) is 60 with respect to
any polynomial basis as in Eq. (2). (b) A bi-
nary sequence S, with period 63 is given by

0101111111001100000110111111010100111111000
11001110100101001011....

The LC of TY(3,S,) over GF(2%) is 55 or
53 with respect to the polynomial basis as in
Eq. (2 using x*+x+1 or x3+3cz+l,
respectively. u

Proposition 9: [3] The characteristic poly-
nomial of a sequence over GF(g) divides
any connection polynomial of the LFSR that
generates the sequence over GF(g).
Therefore, it is uniquely determined up to the
multiplication by a constant.

A question at this point is the following: is
it possible that the shortest LFSR that gen-
erates S over GF(p) is indeed the shortest
LFSR that generates 7(k,S) over GF(p*)
with respect to some basis of GF(p*) over
GF(p) for k=27 If it is possible to charac-
terize such p-ary sequences S, then
T(k,S) over GF(p*) has the same charac-
teristic polynomial as S and hence it is over
GF(p).

Theorem 10 (Main Theorem): Let the
characteristic polynomial C(x) of S={s,}
over GF(p) be given by

Ax)= HI( £ ()™ for some irreducible pol-

ynomials f{x) of degree d; over GF(p),
some positive integers m; and some index
set I Let T(%,S) over GF(p*) be defined
as in Eq. (3) with respect to some but fixed
basis for k£>1. Then, the shortest LFSR that
generates S is also the shortest LFSR that
generates T(k,S) over GF(p*), if k and
d; are relatively prime for all ‘L
Furthermore, it is also the shortest LFSR of
T(k,S) over GF(p™) for any m=Fk such
that m and d; are relatively prime for all
el

Proof: We know that the LFSR with
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C(x) also generate T(k,S) over GF(p*)
by Prop. 6. We now claim that C(x) is the
least degree connection polynomial for

T(k, S) over GF(p*). Suppose, on the con-
trary that the degree of C((x) is not the
least for 7(k,S). Then the shortest LFSR
with connection polynomial C (x) exists and
C'(x) divides Clx)= L[[(f,»(x)) "™ by Prop.
9. We note that the necessary and sufficient
condition for f{x) over GF(p*) to be irre-
ducible is that % and d; are relatively prime
[3, Corollary 3.47, page 107]. Therefore,
Co)= ],Z_E[I(fz-(x)) ¥ where s; is a non-neg-

ative integer,

lg]sz( lglmi. On the other hand, the poly-

0<s;<m; for all =l and

nomial C'(x)= ];Il(fl-(x)) * is over GF(p),

and Prop. 6 (the converse part) implies that
C'(x) is also a connection polynomial for S
over GF(p) which is a desired contradiction.
Furthermore, if we regard each term of
T(%k,S) over GF(p™) for any wm=k such
that m and d; are relatively prime by in-
serting so many 0’s at some fixed positions,
all the previous arguments will be similarly
applied. ™
The converse of Theorem 1 is not gen-
erally true by the following example.
Example 11: A binary wm-sequence S
with characteristic polynomial
Clx)=x"+x+1, is given by
111101011001000 ...
The 4-ary sequence 7T(2,S) has the same
characteristic polynomial as S with respect
to the polynomial basis in Eq. (2) even
though the degree of C(x) and k=2 are
not relatively prime. ]

Corollary 12 (Main Corollary): The line-
ar complexity of 7(k,S) over GF(p*) as
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constructed in Theorem 10 is fixed regardless
of the choice of basis when symbols are rep-

k-tuples  over GF(p).
Furthermore, so is the LC of 7T(k, S) over
GF(p™) for m=k, if m and d, are rela-

resented as

tively prime for all i1

Corollary 13: For a p-ary wm-sequence
S of period p"—1 with p a prime, the
shortest LFSR that generates S is also the
shortest LFSR that generates T(k&,S) over
GF(p*) as defined in Eq. (3) with respect to
any basis if k& is relatively prime to 7.
Furthermore, it is also the shortest LFSR of
T(k,S) over GF(p™) for any m=k which
is relatively prime to 7.

For binary sequences, besides the case of
m-sequences, we would like to pick up one
additional case to which Theorem 10 applies.

Corollary 14: If a binary sequence S has
a period 27 (for example, binary de Bruijn
sequences), then the shortest LFSR that gen-
erates S is also the shortest LFSR that
generates T(k,S) over GF(2%) as defined
in Eq. (3) for any positive integer k.
Furthermore, it is also the shortest LFSR of
T(k,S) over GF(2™) for any m=k.

Proof:- We note that the characteristic pol-
ynomial C(x) of a binary sequence S with
period 27 is of the form (1+x)° for some
positive integer z [1]. L]

Example 15: A binary sequence S with
period 16 is given by

0000101111110100 ...
An 8-ary sequence 7T(3,S) with 2=23 over
GF(8) becomes

000 000 001 010 101 O11 111 111 111 111 110
101 010 ...
An 8&-ary sequence T7(3,5 over GF(16)

becomes

0000 0000 0001 0010 0101 0011 O111 O111

www.dbpia.co.kr
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0111 0111 0110 0101 0010 ...

Here, the symbol 0 is padded at the leftmost
position of the every term of 7Y(3,S), and
the resulting 4-tuples are regarded as the el-
ements of GF(16). A 16-ary sequence
7(4, S) becomes

0000 0001 0010 0101 1011 O111 1111 1111
1111 1110 1101 1010 0100 ...

All these sequences have the same character-
istic polynomial and the corresponding LFSR
is shown in Fig 2. .

(oo

Fig. 2. The shortest LFSR generating S and three 77s
of Example 15.

Example 16: A ternary sequence S in Ex. 7
is indeed an wm-sequence with the character-
istic polynomial x*+2x+1 of degree 3.
Therefore, the ternary 4-tuple sequence
7(4,S) in the example has the LFSR shown

in Fig. 1 as the shortest LFSR over
GF(3%). Theorem 10 implies that so does
T(k,S) over GF(3% for any # not divisi-
ble by 3. "

Remark 17: Some interesting discussions
are given in [7], [8] which are methods of
constructing pkfary m-sequences  using
several p-ary m-sequences of the same
period. We note that the resulting m
-sequences over GF(»*) do not have the
same characteristic polynomial as the compo-
nent p-ary m-sequences. In [8], for exam-
ple, if the characteristic polynomial C(x) of
the component p-ary m-sequence over
GF(p) has degree Fkn, then the character-
istic polynomial of resulting pkfary m

-sequence over GF(p*) has degree #, and

in fact, it must be a factor of C(x) over
GF(p". .
Now, let U={wu,}, where n=1,2,---, be a
p-ary k-tuple sequence in general. In order
to determine its characteristic polynomial of
U over GF(pk), we need to fix one basis
for BM algorithm. Following theorem charac—
terizes those U which do not need this.
Theorem 18 Let U={u,}, where
n=1,2,~, be a p-ary Fk-tuple sequence in
general, where w,=(u 5, % 5, ", %,.). Let
a basis of GF(»*) over GF(p) be fixed, and
the characteristic polynomial C(x) of U
over GF(p") using BM algorithm be de-

termined to be of the form ];_elz(f o)™,

where f(x) are irreducible polynomials of
degree d; over GF(p), m; are positive in-
tegers, and 7 is some index set. Then, C(x)
is a uniquely determined characteristic poly-—
nomial of U over GF(p*) regardless of the
choice of basis, if % and d; are relatively
prime for all ‘el Furthermore, C(x) is the
unique characteristic polynomial of Xp, k)
over GF(p™) for any m>k using any basis
such that m and d; are relatively prime for
all el

Proof: Suppose C'(x) is the corresponding
characteristic polynomial of U now over

GF(p") with respect to another basis. Then,
C'(x) must divide Clx)= Hl(f,-(x)) " by

Prop. 9 over GF(p*), since C(x) also gen—

erates U over GF(p*) with respect to an-
other basis. This happens because the two
operations, addition and multiplication, of the
LFSR over GF(p® corresponding to C(x)
are independent of the chosen basis since
C(x) is essentially over GF(p). That is,
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they are essentially the operations over
GF(p). Therefore, C'(x) must divide C(x)
over GF(p), and using the same arguments
as in the proof of Theorem 10, we have a

contradiction unless C'(x) = C(x). L]
IV. Concluding Remarks

An observed FH pattern by an interceptor
must be a non-binary sequence over some
unknown symbol set, and this causes a prob—
lem of determining the LC of the pattern
since some specific operations of the LFSR
must be provided. Therefore, it is reasonable
that the interceptor will use such choice that
leads to the least LC over all possibilities,
and the system designer on the other hand
must consider the LC of the FH pattern over
various algebraic structures and the symbol
correspondences including the true choice of
the system.

In reality, however, we believe that a good
choice would be the smallest size finite field
of characteristic 2 that can just cover all the
symbols of the sequence, because the compu-
tations over characteristic 2 are most effi-
ciently implemented as hardware systems and
the usual practice follows this idea.

We have tried several other options but
failed to extract any further reasonable be—
havior of non-binary sequences over GF(p*)
whose characteristic polynomial is uniquely
determined regardless of the choice of basis
other than those given in Theorem 10 of
Section III. Theorem 18 is slightly more gen-
eral in that the p-ary A-tuple sequences are
not necessarily constructed as a k-tuple ver-
sion of a p-ary seguence.

We note that Theorem 10 and its corol-
laries also apply equally well to T(&,S) de-
fined by

L =S uro(i)> S ut o2 S utath)s  (4)

where ¢ is any permutation on {1,2, ', 4.
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A further generalization is also possible by
using any non-negative integers instead of
o(7) for each 1.
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