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ABSTRACT

This paper studies the application of a fuzzy-ARTMAP neural network to digital communications

channel equalization. This approach provides new solutions for solving the problems, such as

complexity and long training, which found when implementing the previously developed neural-basis
equalizers. The proposed fuzzy-ARTMAP equalizer is fast and easy to train and includes capabilities

not found in other neural network approaches; a small number of parameters, no requirements for the

choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima,

and the capability of adding new data without retrainig previously trained data. In simulation studies,

binary signals were generated at random in a linear channel with Gaussian noise. The performance of

the proposed equalizer is compared with other neural net basis equalizers, specifically MLP and RBF

equalizers.
I . Introduction

In digital communication systems, data
symbols are transmitted at regular inter-
vals. But time dispersion caused by non-
ideal channel frequency response characte-
ristics, or by multipath transmission, may
create intersymbol interference (ISI). To deal
with ISI, many researchers have been
concerned with applying neural networks,
such as multilayerperceptron (MLP) and
radial basis functions (RBF), to equa-
lizers™® The basic idea of applying neural
network to equalization comes from the fact
that channel equalizer problems can be
regarded as pattern classification ({(detection).
Previous studies have shown that neural
network based equalizers are superior to
linear equalizers in handling the
situation where the channel suffers from high
levels of additive noise and highly nonlinear
distortion. However, each of these networks
internally has significant shortcomings. MLP
equalizers typically require long training and

are sensitive to the initial choice of network
{especially  initial  weights).
Furthermore, MLP equalizers need to decide
by trial and error how many hidden units are
needed. Also, RBF equalizers are simple and
fast to train, but usually require a large
number of centers, which increases the
complexity of computation. In addition, it is
not easy to determine both the number and

parameters

the location of centers required to train.

In this paper, a fuzzy-ARTMAF neural
network is applied to digital communication
channel equalization. The main purpose of the
proposed equalizer is to overcome the
obstacles in implementing the previously
developed neural-basis equalizers above.
Since the advent of the fuzzy-ARTMAP
neural network, the application of fuzzy-
ARTMAP has been discussed mainly as it
applies to pattern recognition fields. Through
this paper, we describe how fuzzy-ARTMAP
is combined with channel equalization
techniques, The essential idea of this
approach comes from the outstanding rec-
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ognition capabilities and simple architecture of
fuzzy-ARTMAP. The proposed fuzzy-
ARTMAP  equalizers attractive
characteristics that are not found in
previously developed neural-basis equalizers;
a small number of parameters, fast and easy
training, no reguirement for the choice of

provide

initial weights, automatic increase of hidden
units, and capability of adding new data
without retraining previous patterns.

Section II presents a brief summary of the
fuzzy- ARTMAP learning
mechanism. Section III gives the structure
and learning procedure for the fuzzy
ARTMAP equalizer. Simulation results are
provided in Section IV, and Section V gives
the conclusions.

network  and

O . Background of the Fuzzy-
ARTMAP Neural Network

Since the advent of ART (adaptive
resonance theory) as a cognitive and neural
theorym, a number of ART neural network
architectures have been progressively
developed. These models include ART?2,
ART3, fuzzy-ART, ARTMAP®',  ART
networks require that the input vectors be
binary. ART2 networks are suitable for
processing analog patterns. On the otherhand,
ARTMAP is a class of neural network that
performs incremental supervised learning of
the categories for recognition.

Recently, a growing number of models
synthesize  properties  of
neural networks, and fuzzy logic.
Fuzzy-ARTMAP is one such model,
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Fig.l Fuzzv-ARTMAP structure block diagram
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combined with ARTMAP and fuzzy logicm.
Fuzzy-ARTMAP is a neural
architecture  that

network
performs incremental
supervised learning recognition categories and
multi-dimensional maps in response to
arbitrary sequences of analog or binary input

vectors, and learns to classify inputs

by a fuzzy set of features or a pattern of
fuzzy membership values between 0 and 1
indicating the extent to which each feature is
present. A schematic diagram of
fuzzy~-ARTMAP network is shown is Fig. 1.

Fuzzy-ARTMAP utilizes a minimax
learning rule that conjointly minimizes
prediction error and maximizes generalization.
As leaming proceeds, the input and stored
prototype of a category are said to resonate
when they are sufficiently similar. When an
input pattern is not sufficiently similar to any
existing prototype, a new node (or hidden
unit) is created to represent a new category
with the input patterns as the prototype. The
meaning of similarity depends on a vigilance
parameter p, with0< po=1 . If p is small,
the similarity condition is easier to meet,
resulting in a coarse categorization. On the

other hand, if p is set close to 1, many
finely divided categories are formed. As a
result, a fuzzyv-ARTMAP system increases
the network  architectures (number of
clusters)to the minimum level necessary for
perfect performance on the training data. By
selecting the desired level for the vigilance
parameter, the user has conirol over the
performance of the work. Details of the

fuzzy-ARTMAP network are given in [8].

. Implementation of
the Fuzzy-ARTMAP Equalizer

In order to train a neural network to serve
as a channel equalizer, it 18 necessary 1o
generate appropriate training
data. In this study, the network is trained to
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reconstruct the original signal(l or -1) based
on the signal received after transmission over
a dispersive channel, as shown in Fig. 2.

Therefore, input patterns for the network
consist of received signals and the corre-
sponding target is the original transmitted
signal. The channel is characterized by its
transfer function, which in general has the
form

HZ) = nﬁ;:ﬂ W2 " 1

where P is the channel order. If g denotes
the equalizer order (number of tap delay
elements in the equalizer), then there are

M= 219! different sequences

Av=lap, @y, oo @yep 17 (2)
that may be received (where each component
is either 1 or -1). For a specific channel
order and equalizer order, the required

number of training patterns is M .

If pure training patterns were available ,
they could be wused directly, but Iif
fuzzy-ARTMAP is to be trained with noisy
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Fig.2 The structure of fuzzy-ARTMAP equalizer
system

signals, preprocessing is necessary to prevent

the 1"1etwork from learning the noise. In this
study, the situation of a noisy transrnission
path is simulated by adding Gaussian noise
to the received signal after each possible
transmission sequence is passed through the
transfer function. The training patterns are
generated by applying the  supervised
K-means clustering algorithm @ to remove
the Gaussian noise:

Algorithm:
{ Supervised K-means clustering}

A, =A)
counter, = countet; + 1;
D = (counter —~1)-D, + R,

counter,

where
D, =[dy.d;mdy, )
R, = [rk,rk_L,...,rk_q]T,
i=12,...M, (3)

and Az, Rk, and D;are the combination of

A

training pattern, respectively. As shown in

k, the received signal vectors, and a

(3), the number of components in the R,

is g+1. To facilitate the graphical
representation of the network input

vectors, the example given below are
limited to equalizer order g+l | so that
the input vectors have two components.

The training patterns which come from
the transfer function(either directly or after
the noise removal) have components that
are not in the correct range for
fuzzy-ARTMAP. The actual range depends
on the transfer function; however, the
binary sigmoid
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1
1+e ™ (4)

converts the interval [-n, nl to [01] and
thus is suitable for making the required
conversion for any transfer function. The
final input vectors after converting and
complement coding procedures are

X,‘ =[X,-, x?]Ts i=12,.,.M (%)
where
Xi = [xio,xils --'1‘xiq]' (6)
ch :[l_x['o,l—xils"',l—xiq], (7)
1 .
X, = s J :0,1,...,q

The target wvalue for each generated

training pattern is the correct value for @k-4
for the desired delay, d. The appropriate

value of d is determined by the dominant
term in the transfer function. A target value
of 1 is represented by the vector (1,0); the
target value of 1 is given by the vector(0,1).
To generate training patterns for a given
channel input matrix and noisy channel
output vector, it is necessary to estimate the
channel order. This is done using regression
analysis ® For details of training algorithms,

readers are referred to see the paper 8

V. Simulation Results

The fuzzy-ARTMAP equalizer was applied
to several linear channels with different
transfer functions. Among the favorable
characteristics of this network is the fact
that there are relatively few network
parameters to be determined. The steepness

708

of the sigmoid function(@ in (4)) used to
convert the input patterns into the required
interval(0, 1) and the vigilance parameter for
the networks must be set by the user. The
network is not particularly sensitive to the
values of either of these parameters. Sigmoid
steepness parameter values in the range (0.7,
1.0) were used. The value of the vigilance
influences the number of clusters formed (as
fuzzy-ARTMAP
networks increase the vigilance, if required,

is  well known), but
to ensure that the training data are learned
perfectly. The value of the vigilance has a
more pronounced effect on the performance of
the network after traiming, since the network
will reject as unknown any input that is not
sufficiently similar (based on the vigilance
value) to the training patterns,

In Fig. 3, there are 16 patterns that are
estimated from the noisy received signals by
using the supervised K-means clustering. As
shown in Fig. 3, high vigilance results in
more clusters, and the

2
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Fig. 3 Comparison of the number of clusters
HZ)=0.2+1.027'+0.227%, q=1,d=1
circles : patterns with a,., =1,

triangles © patterns with a,. ;= —1
(a) vigilance parameter = 0.7, 2 clusters
(b) vigilance parameter = 0.85, 4 clusters

f

error rate performance with high vigilance
was Dbetter than with low vigilance. The
vigilance value also affects the region which
each cluster will accept when the net is
applied (after training). The cluster will
accept all points that fall within the
boundaries shown, and also points somewhat
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outside the dotted rectangle region.

A comparison of the performance of the
fuzzy - ARTMAP equalizer t¢ that of a
linear equalizer, and two other neural network
equalizers is illustrated in Fig. 4 for the

transfer function
H(Z)=0.5+1.0Z"! ©

with g=1 and d=0. As shown in Fig.
4{a), the nonlinear decision boundaries cannot
be achieved by the linear equalizer. The
response regions for the radial basis function
network and the fuzzy-ARTMAP equalizer
are simlar. In the case of the MLP equalizer,
the number of units used in input, hidden,
and output layers were two, eight, and one,
respectively, The RBF equalizer uses eight
centers which are estimated from supervised
K-means clustering. For the fuzzy-ARTMAP
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Fig. 4 Comparison of nonlinear decision
boundary :
H2)=05+1.0Z7", ¢=1,d=0
circles : patterns with a,=1,
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Fig. 5 Error rate comparison
HZ)=05+1,0271, g=1

(a) d=1 (desired symbol = @,., )

(b) d=0 (desired symbol = a,)

equalizer, the vigilance, and sigmoic stee-
pness parameters were 095, and 06
respectively.

Fig. 5 shows the error rate comparison of
one linear and three kinds of neural network
equalizers over two different channel delays
that were introduced in training. Fig. 5(h)
shows worse performance than in Fig. 5(a),
because, for
non-minimum phase channel in (9), training

without delay element (ie,d =0) results in
non-linear decision boundary. As shown in
the graph, the performance of the fuzzy-
ARTMAP equalizer is superior to that of
both the linear and MLP equalizers, while
producing results as favorable as those In
RBF equalizer. Although the performance of
the RBF egualizer is almost the same as that
of the fuzzy-ARTMAP equalizer, the
fuzzy~-ARTMAP equalizer is a more attra-
ctive candidate than the RBF equalizer
considering the cost and efforts required in
neural network implementation. Here, MLP
and RBF equalizers use eight hidden units, or
centers, while the fuzzv-ARTMAP equalizer
requires four clusters for a linear cdecision
boundary case. In Table 1, the training
efforts of the fuzzy-ARTMAP equalizer are
compared with that of both MLP and RBF
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equalizers.

The training speed of the fuzzy-ARTMAP
equalizer over the MLP or RBF equalizer can
be much faster as the order of channel

impulse response increases.

V. Conclusion

In this paper, a new fuzzy-ARTMAP
equalizer system is developed mainly for
solving the problems of long time of training
and complexity which are often encountered
in previously developed neural-basis equa-
lizers such as MLP and RBF equalizers. The
fuzzy-ARTMAP equalizer is fast and easy to
train and includes capabilities not found in
other neural network approaches; a small
number of parameters, no requirements for
the choice of initial weights, automatic
increase

Table 1:Training efforts comparison  between
fuzzy-ARTMAP, RBF, and MLP equalizers

fuzzy
_ARTMAP RBF MLP
Performance
sensitivity not not "
for initial sensitive | sensitive sensitive
weights
The way of | automatic
determining |increase by
number of itself trial and trial and
hidden units | during the errer error
(cluster training
units) period
Number of
hidden units
required in 4 8 8
training
Training
speed(trainin
g time for |approx. 1/5|approx. 1/3 1
MLP is set
to 1)
710

of hidden units, no risk of getting trapped

in local minima, and capability of adding new
data without retraining previously trained
data. Throughoutthe simulation studies, it
was found that the fuzzy-ARTMAP equalizer
performed favorably better than the MLP
equalizer, while requiring relatively smaller
computation steps i1n training. The main
advantage of the proposed fuzzy-ARTMAP is
fast training due to the structural simplicity
of fuzzv-ARTMAP. The superiority of
fuzzy-ARTMAP to other neural networks
makes the implementations of fuzzy-
ARTMAP equalizer feasible.
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