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- Performance Analysis of a Finite-Buffer Discrete-Time
Queueing System with Fixed-Sized Bulk-service

Seok-Ho Chang*, Tae-Sung Kim** Regular Members

ABSTRACT

We consider a finite-buffer discrete-time queueing system with fixed-size bulk-service discipline:
Geo/ G?/1/K+ B. The main purpose of this paper is to present a performance analysis of this system
that has a wide range of applications in Asynchronous Transfer Mode (ATM) and other related
telecommunication systems. For this purpose, we first derive the departure-epoch probabilities based on the
embedded Markov chain method. Mext, based on simple rate in and rtate out argument, we present stable
relationships for the steady-state probabilities of the queue length at different epochs: departure, random,
and armrival. Finally, based on these relationships, we present various useful performance measures of
interest such as the moments of number of packets In the systern at three different epochs and the loss
probability. The numerical resulls are presented for a deterministic service-time distribution - a case that
has gained importance in recent years.

Key Words: Discrete-time queue: Finite buffer; Fixed—size bulk service: ATM network

discrete-time queueing models.

1 Introduction In recent years, there has been a growing

interest in the analysis of discrete-time queueing

Recently, B-IDSN (Broadband Intcgrated Services models due to their numerous applications in the
Digital ~ Network)  based on  the ATM performance analysis of ATM and various related
(Asynchronous  Transfer  Mode) technology  has telecommunication systems. Readers are referred
reccived  considerable  attention duc  to  its to Bruneel and Kim [2] and takagi [19] Tran Gia
capability of providing a common interface for et al. [20), Miyazawa and Takagi [14] and Perros
multimedia service including video, data, and et al. [16] for extensive treatments on various
voice. The ATM is a multiplexing and switching types of discrete-time queueing models and their
technology that consists of transferring information applications to various telecommunication systems.
units through the network in fixed size units, In many modem digital telccommunication
called cells, each containing 48 bytes of user systems, it s frequently observed that packets are
information and 5 bytes of header (see references served in groups. For example, consider an ATM
M0, 15], for examples). In ATM  statistical multiplexer where  superposition  of numerous
multiplexer, all event, such as arrivals and individual packets arrives, is stored, and where a
departures  of  packets, are allowed only at fixed limited number of packets are transmited

regularly spaced points in time. Modeling and during a slot. This system can adequately be

performance  issues  in this  system  nccessitate modeled by discrete-time queueing model  with
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bulk service. We adopt the Bemoulli process for
modeling the arrival ‘process of this system for
the following reasons: (i) A Bernoulli arrival
process describes the superposition of numerous
individual packet arrivals sufficiently well as long
as the none of the individual precesses dominates
and self-similarity effects are not present (see
Section 2.3 in Kuehn ({10}, for details). (ii)
Queues with Bemoulli atrival process are
analytically and computationally tractable. We
choose the fixed-size bulk-service policy for
modeling the service mechanism of the above
system because it unifies both single service and
bulk service discipline. Finally, we assume that
the service times (or transmission time) of groups
of packets are generally distributed because this
assumption leads to a great flexibility in modeling
the real transmission times of -above system.
Besides applications in  ATM  multiplexer and
related telecommunication systems, discrete-titne
bulk service queueing models have applications in
various other areas such as traffic, transportation,
manufacturing and other related systems. The
readers are rteferred to Powell '[17], Powell and
Humblet [18] and Dshalalow [8, pp.243-244], (7,
pp.61-116] and the references therein for an
extensive list of references and applications on
bulk-service models.

In reality, most ATM multiplexers have finite
buffer. In this type of finite-buffer queunes, one of
the main concerns of a system designer is to
provide ' sufficient buffer so' that the loss
probability of packets is minimized. To this end,
it is crucial for a system designer to calculate the
logs probability accurately. Also it is widely
recoghized that the results of the infinite-buffer
queucing models can be obtained form the
corresponding  finite-buffer queneing models by
taking the finite-buffer parameter sufficiently large.
In view of this, we assume that the buffer size
of our system is finite.

In this paper, we consider a ﬁnite~buﬁér
discrete-time queueing model, with fixed-size
Geo/ GB/1/K + B.

bulk-service discipline:
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Readers are referred to Section II for more
details. One special case of our model is

Ceo/ DP/1/K+ B , where each artiving packet
requires a deterministic service time that could be
greater than one slot. This queueing model has
gained importance in recent years in view of a
number of practical applications in
telecommunication  systems, such as ATM
switching circuit-switched TDMA
systems and traffic concentrators (see Bruneel and
Wuyts [3] for details on the applications of

deterministic service time queueing models). The

elements,

main purpose of this article is to discuss both
analytically and cbmputationally
deo/ GE/1/K+B quencing model Cthat  has
applications in ATM multiplexer and various other
telated telecommunication systems as mentioned
above. For this purpose, we first derive the
departure-epoch  probabilities  based ~ on  the
embedded Markov chain method. Next,' based on
simple rate-in and rate-out argument, we present
relationships for the steady-state probabilities of
the queue length at different epochs: departure,
random, and arrival. Finally, based on the
relationships, we  present  varions  useful
performance measures of interest such as moments
of number in the system at three different epochs
and the loss probability. A variety of numerical
results have been obtained for several service time
distributions, but only a deterministic service time
distribution, a case that has pained importance in

recent years, is presented.

In discrete-time (ueueing models, the time axis
is divided into a sequence of fixed-length
intervals of unit duration, called slogs. It is always
assumed that interarrival and service times are
integer multiples of unit duration (without loss of
generality, unit duration is assumed to be unit
time). The state of the system can change only at
a slot boundary #n=0,1,2,---. Under this -

“setting, it should be remarked that an arrival and

a  service completion can  take  place
simultaneously at a slot boundary. Therefore, it is

required to make an assumption regarding the
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oder of these simultancous events, and there have
been two typical assumptions: either an arrival is
assumed to have precedence over such a service
completion or vice versa. The former is referred
to as Late Arrival System with Delayed Access
(LAS-DA [2, 19]) and the lattcr as Early Arrival
System  (EAS  [9]). Under LAS-DA/EAS, an
arrivalfa service completion can occur in the
intetval (#—, %) while a service completion/an
arrival can occur in the interval (7, n--), where
n— and #»+ rtepresent the time points

immediately before and after the slot boundary x,
respectively. Tt is  widely recognized that
telecommunication system is better fitted by LAS
(see Brunecl and Kim [2, p.2] and Takagi [19]
for more details). In view of this, we adopt the
LAS-DA.

There have been many siudies that dealt with
analytic and computational aspects of various
types  of  discrete-time  queueing  models.
Researches on  this tdpic can be found in
references [2-3, 6, 9, 11-12, 20], to name a few.
Excellent  overview on  various types  of
discrete-time queues can be found in Bruneel and
Kim ({2] and Takagi [19] and the references
therein,

The rest of the paper is organized as follows:

Section I presents the assumptions of the
Geol GB/1/K+ B queue. Section T derives
the steady-state probabilities of the queue length
at a departure-epoch. In Section [V we derive the
rclationships  among  departure-, random- and
arrival-epoch  probabilities. A sample numerical
example and some comments are provided in
Section V. Fimally, Section VI concindes this
paper, followed by References.

0. Model and
Assumptions: Geo/GY/1/K+ B

We consider a finite-buffer  discrete-time
queneing system with fixed-size  bulk-service

discipline: Geo/G?/1/K+ B. We adopt LAS-DA

where packets arrive late during a slot and get
delayed access to the scrver if they arrive to find
the system empty. Readers are referred to Bruneel
and Kim [2, p.2], Hunter [6] and Takagi [19,
p4] for more details on LAS-DA,

This paper considers the system that satisfies

the following assumptions.

Assumptions

Packets arrive at the system according to a
Bemoulli proccss with mean interarrival time 1/ A.
The service times of groups of packets (of size
B) are independent and identically distributed (iid)
random variables in accordance with a general
k=1,2,,
finite mean E(S5), and PGF S(z). The packets
are served on a first-come, first-served basis by a

probability mass function g,

single server in groups of fixed-size B (B=1).
If the number of packets in the system at (he
beginning of a service is less than B, the server
waits till the number of customers in the system
becomes B3, and then testarts service, The service
times of groups of packets are independent of the
arrival process and the numbers served. The

butfer has finite capacity K, so that not more
than K+ B can be present in the system at any
time, K customers waiting for service and B
customers being served. We assume B<K. We

define o= AE(S5)/B as the offered load of the

system.
I1.The Departure—epoch Probabilities

In this section, we derive a set of equations for
the steady-state probabilities of the queue length
at an arbitrary departure-epoch of a service group
{of size B) in the Geo/G®/1/K+ B queucing
model,

We adopt the departure-time embedded Markov
chain method to derive a set of equations for the
departure-cpoch probabilities. Define N | be the

number of customers in the queve right after a
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completion of # t

B). Let us define '
Pi=1lmP(N =5, 0<k<K.
no

service (of a group of size

If we denote /&, be the probability that the
number of cusiomers arriving during a service
time (of a group) is equal to 7, 'then it is’ given
by

k= 2 PLA=] | service time=1) s
= gl( f) A (A= sy j=0,1,2,

where A denotes the number of customers
arriving during a service time {of a group).
Now it can be seen that {N I} is a
discrete-time Markov .chain. Let
py=P(N jiy=j| N J=34). Then, it can be

shown that Pf: in b can be written as
=

follows:
For j=0), ,
Pi=P§ - ko+ Pl -ko+Py -kt M
'"+P$_1 - k0+P§ “ko.
For j=1,2,,K—1,
Pi=P§ - k;+P{ &,
ot Pkt Pgk; @)

+Ph bt Pl k1B
+Px - ki-x-n.

For j=K,

pr=rpi-[ ]+ Pi [ ]+

oo

+P§_1-[‘§Kkul+P§-[v§Kku] @

+Phsr [ u=$—1k”]+m

+P;,1.[v§+lku]+za,t- g}uku].
(Nole:Pf'-"—O,if <0 and k,=0, if <0 in
(1), (2) and (3).)

It can be vetified that equation (3) is redundant
and will not be considered henceforth. Using the
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software packages such as Mathematica or even
otherwise, we can solve (1), (2) and an equation

for  normalization  condition  ( ﬁoP;r= 1) ,
=

simultaneously  to
probabilities.

compute

departure-epoch

The evaluation of % ;’s for various service
time distributions in (1) and (2)

The PGF of %; K(z), Is given by (see

Takagi [19, p.5], for example)
K(z)=S(1—A4-A2),

where K(z) denotes the number of packets that
arrive during the service time of a group of
packets (of side B). We can invert the PGF
K(z) using Mathematica by expanding a
polynomial depending on a particular service time
distribution to get the probabilities {% ;}. For more
details, see Section V. The expressions for
K(z) of some service time distributions are as
follows:

(1) Geometric

When the service time disaibution is geometric
with parameter g, ie.  s,=(1-— 1) “=ly, we
have

_ pu
K(z)= 1= u | w1 adee

(2) Negative-binomial
Here, the service time is convolution of k%
geometric distributions. In this case, we have

k

K@= (Tog™ ) | wmtoeie
(3) Deterministic
In this case, the service time has a comstant value
d, so we have

K@= 2| ye1-2+is

(4) Mixture of M geometric
In this case, the service time is a mixture of M
distributions such that

8 p= gla, (1—,&1)"_1111;

geomeiric

n= 1,2’...’
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From this we get

() — S o L .
O D e I L

No table showing numerical work for (1), (2) and
(4) cases is attached, though the numerical work
can be done similarly. Note that all the above
functions can  be easily inverted using
Mathematica or some other software packages.

Once we obtain departure-epoch probabilities,
the performance measures such as the mean and
the variance of number of packets in the system

at a departure-epoch can be obtained and are

given, respectively, by L T= SUHP; and

Var " = ﬁ()nzP;’—L”, where L ¥ and
=

Var ™, respectively denote the mean and the
variance of number of packets in the queue at a

deparure-epoch.

IV. Relationships between
Random-epoch and Departure -epoch
Probabilities

In this section, we derive stable relationships

berween  random-epoch  and  departure-epoch
probabilities.

Let P, j=0,1,~ K+B—1,K+B},
P, j=0,1,--.K+B—-1,K+ B}, and
{P;, i=0,1, K-1.K) be the

arrival-epoch, random-epoch and departure-epoch
probabilities, respectively.

Without loss of generality, we assume that
packets within each departing group (of size B)
are randomly ordered and thar they leave the
system onec by one instantaneously according to

their  order.  Under this  assumption, Tlet

{Pf, j=0,1, K+ B—2,K+B—1}  be

the probability that an accepted individual packet

leaves behind ; packets in the system (including
served packets, if any, who follow it) just after
its departure. Note that P2, ,==0 by definition.

It is well-known that in models where the

amrivals  follow a Bemoulli process, the

arrival-epoch probabilities
P;, 7=0,1,~,K+B—1,K+B) is
identical to the random-cpoch probabilities
iP;, i=0.1, K+B—1,K+B) (See
Boxma and  Groenenndijk [1] for details).
Consequently, the results in this section apply to

both random-epoch and arrival-epoch probabilities.

Lemma 1. The steady-state probabilities (P}
and {P f’ } are related by
P;r=(0—PgepP}, j=1,2,~ K+B-1.
)

Proof: If we only consider the situation where
the system is mot fully occupied, the probability

distribution { P 7} for the number of packets in
the system immediately before an arrival is
proportional to the probability distribution {Pf}

for the number of packets in the system
immediately after a departure of a packet. From
this, we get
P;=cP7?, j=1,2,» K+B~1 (9
where ¢ is a proportionality constant which can
be determined as follows: Summing (5) over for
=12, K+B—-2 K+B—1, we get
c=1—Pgip ©
Combining (5) and (6) gives (4). [ ]

Next, we characterize the relationships between
{P7, j=0,1,» K+B-2,K+B-1) and
P/, j=0,1,~,K—1,K} using the tate-in

and rate-out argument in the following Lemma 2,

Lemma 2. The steady-state Probabilities {P ,\'}

and {Pf”} are related by
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JHK+-B—1.

i‘bP, o 7=0,1,2,-
)]

Proof: We view a departure in two respects: a
departure of group (of size B), and a departure of
a packet. First, we consider the transition rate
into the state j by the departures of individual
packets. As stated in Section II, A represents the
mean artival rate of individual packets. Then it
can be easily seen that A(1—Pg,p) is the
effective input mate of individual packess. Note
that in steady-state, A(1— P, p) is also equal
to the effective output rate of individual packets
(i.e. the expected number of individual packet
depariures per slot). Note further that the
probabilities {PP} can be interproted as the
long-run fraction of individual packet departures
that leave behind the system with state j. Then, it
is clear that the transition rate into the state j
(from the state j+1) by the departures of
individual packets is given by A(1—PgsnP?l.
Second, we consider the (ransition rate into the
state j by the departures of groups (of size Bj.
Since A(1—Pxyp is equal to the mean
departure rate of individual packets, it can be
seen that A(1—P g, p)/B is the mean departure
rate of groups (of size B). By the similar
reasoning as above, the transition rate into the
statc j from the state j+k k=1,2,,B—1,B,
by the departures of groups is given by

A(l-Px ‘
—Bl{ié)—g]P;kwg. In summary, we

have

Transition rate into state j by departures of
individual packets = A(1—P x5 P7. (8)
Transition rate into state j by departures of

groups =’1(_1£§ﬁ ipl” . ©)

(MNote: PP=Q if j<0 in (8, and P =0,
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if 70 in (9).) Equating (8) and (9), and
algebraic simplification gives (7). [ ]

Theorem 1. The steady-state probabilities
{P;} and {P]-Jr} are related by

P B +
Py = RS-0+ B A fi

7j=0,1,,K+B—1, o
and Pygyp= A}EA(ES)S—ZHB' ‘ (11

where  is as defined in (135).

Proof: Combining Lemmas 1 and 2, we get

—La-rPra EPL.

=01, K+B—-1. 12
Using the argument that, in steady state, the
effective input rate of individual packets is equal
to the effective output rate of individual packets,

we get

A(l = P gep) = P(server is busy)%

_&fp-_B_
-EBrs W

Substituting (12) into (13), we have

/1(1 —Pg.p) = Plserver is busy)%

== PK+B) Jfﬁ EDP" 'E(S) a®

E(S) PIwB
JZIJP,H 2,]313,-*‘.(15)

Let Q= ,2& jt_'bp,t[:

Combining (14) and (15), we get

- ___ABS)—Q
Prir=T7R(S-Q+B - (16)
Substituting  (16) into (12) and ‘ algebraic
simplifications give (10). This completes the

proof, |

Remark 1. Once we obtain {P}} probabilities

from Section III, we can also obtain {F;} and
{P;} probabilities using Theorem 1.

www.dbpia.co.kr
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Remark 2. Since the right-hand sides of the
above  relationships  are  nonnegative, the

computations produce stable results.

Remark 3. The derivation of Theorem 1 shows
that the relationships hold for the continuous-time

M/ GB/1/K+ B queue.

Once we obtain departure-epoch probabilities
{P;’}, we can also obtain random-epoch
probabilities  {P;} (or arrival-epoch probabilities

{P; 1) by using Theorem 1. We can also get

useful performance measures such as the mean
and the variance of the number in the system at

a random-epoch (or at an arrival-epoch), and the

loss probability P* as follows:

. 3
E= ‘kaPm, Var= lg',lk“Pm—Lz and

P‘:PJ'_\’+B(:PI\'+B)- where [, Var and

7 respectively, denote the mean number of
packets in the queue at a random-epoch, the
variance of number of packets in the queue at a
random-epoch, and the loss probability.

V. Sample Numerical Example

In this section, we provide one sample example
to explain the procedure developed in the
previous sections. Consider an ATM multiplexer
where superpositions of numerous individual
packets arrive, and stored, and where only five
packets can be served during a transmission time.
For this system, it is realistic to assume that the
transmission time of groups is deterministically
distributed (see Bruneel and Kim [2], for
example). Suppose that the transmission time of
groups is 5 and buffer size is 10. Then, this
modeled by

system can be  adequately

Geo/D°/1/10+5 queuwe. We
Geo/D*/1/10+5, A=1/30,

discrete-time

consider

E(S)=15. In this case, S(z) and K(z) are
given, respectively, by

S(2)= 25, K(z)={ 3—102+—§g—}n, (17)

To solve (1), (2) and an equation for

(2 FT=1)

simultaneously, we, first, have to obtain the
distribution ~ {%,;} contained (1) and (2).

Inverting the PGF K(z) given in (17) using
Mathematica, we get <Table 1>.

normalization condition

<Table 1> The distribution {k;} for A=1/30,
E(S)=15, o= AE(S)/B=0.100000 .

(k) £=0.100000
kg 0.844080
k) 0.145531
ko 0.010037
ks 0.000346
ky 0.000005
ks 0.000000
ks 0.000000
kq 0.000000
kg 0.000000
kg 0.000000
k10 0.000000

Note that we only present /%, for (<;<10,
which are needed to solve departure-epoch

probabilities (see equations (1) and (2) in Section
I, for details). Using <Table 1>, we solve
equations (1), (2), and the equation for the
normalization condition simultaneously to compute
A=0.1 and
p=AE(S)/B=0.1 (see <Table Al> in
Appendix). Finally, using Theorem 1, we compute

departure-epoch  probabilities  for

random-epoch  probabilities  (or  arrival-epoch
probabilities) and loss probabilities. For details,

see <Table A2> in Appendix.
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VI. Conclusions

We have successfully discussed performance

analysis of Geo/G”/1/K+ B queueing model
that has a wide range of applications in ATM
multiplexer and various other related
telecommunication systems. We present
steady-state probabilities and moments of the
number of customers in the system at three
different epochs: departure, random and arrival.
Various useful performance measures such as the
loss probability and the moments of the queue
length at three different epochs have also been
obtained both analytically and computationally.
Further, we present stable relationships for the
steady-state probabilities of the queue length at
different epochs: departure, random, and arrival.
Based on the results of this paper, further
researches are required to extend the approach
presented in this paper to more general queueing
models, such as bulk-service queue with variable
server capacity and bulk queues with vacations.
We're currently working on this direction [4-5].
The results and approach presented in this
paper would be beneficial not only to researchers
who study related research topics but also to
practitioners who try to evaluate the performance

of their systems.
Appendix. Sample Numerical Results

Extensive numerical work has been carried out
for the model under discussion. Though many
tables have been produced, only a few are
presented here. The selection has been made in
such a way that by looking at them one gets a
feel and appreciation of the general applicability
of the numerical results. In view of this, attaching
only three tables for some specific example queue
is satisfactory.

All the computations (such as probabilities,
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means and variances) were carried out in double
precision, but the results are presented after
rounding up after the sixth decimal point. It can
be easily noticed that the loss probability and
mean number of packets in the system at a
departure-epoch, a  random-epoch and an
arrival-epoch increase as the offered load (traffic
intensity) increases. This matches well with our

intuitive prediction.

<Table Al> Departure-epoch probabilities of
Geo/D?/1/10+5 where p=AE(S)/B, B=5
and FE(S)=15.

p=0.1 p=1.0 0=2.0

Py | 0844080 0.131687  0.000034
Py 0.145531  0.329218  0.000386
PJ | 0010037 0329218 0.001939
P3 0.000346  0.164609  0.005788
Py 0.000005 0.041153  0.012309
Py 0.000000 0.004115  0.022307
Pg 0.000000  0.000000  0.039274
Pg 0.000000  0.000000  0.069615
Pg 0.000000  0.000000  0.123608
Pg 0.000000  0.000000  0.202492
P 0.000000  0.000000  0.522246
Sum 1.000000  1.000000  1.000000
Mean | 0.166667 1666670 8939116
Variance | 0.161111 1111111  2.269537
Q 0.166667 1.666670  4.968586

www.dbpia.co.kr



<Table A2> Arrival-epoch (=Random-epoch)
probabilities  of  Geo/ D°/1/10 +5 where

o=-—ES), =5 ama B(S=15.

£=0.100000 ©=1.000000 ©=2.000000
Py | 0158265 0015803  0.000003
Py | 0183552 0.055309  0.000042
Py | 0187434 0.094815 0.000235
P3| 0187499 0.114568  0.000812
P, | 0187500 0.119506  0.002039
Ps | 0029235 0104198  0.004260
Pg | 0001948 0.064691  0.008136
B 0.000066 ~ 0.025185  0.014883
Py | 0000001 0005432  0.026628
Pg | 0000000 0.000494  0.045587
Py | 0000000 0.000000  0.095424
Py | 0000000  0.000000  0.091509
P15 | 0000000 0000000  0.084569
P3| 0000000  0.000000 0.072247
P | 0000000 0.000000 0.052061
P15 ol 062500 0400000 0501566
ss prob.)
Sum | 1.000000  1.000000  1.000000
Mean | 2968750 8200000  12.97592
Variance | 11.675928 32.693333  6.250737
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