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ABSTRACT

Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC)
codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief
propagation model can be approximated well by Gaussian random variables, a modified and simplified version of
density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density
evolution of LDPC codes as an ‘alternative decoding algorithm in [3]. Next question is how the min-sum
algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is
obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of
LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the
min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively
computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well
matched to the simulation results.
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1. Introduction

A density evolution technique was recently
developed for the sum-product decoding
algorithm of LDPC codes and it explains the
capacity and convergence issues of the
iterative decoding. In [1], the density
evolution was used to track the density of
extrinsic message between the variable nodes
and check nodes of LDPC code on various
channel conditions. An simplified version of
the  density
introduced under a Gaussian approximation

evolution algorithm  was
in [2]. The Gaussian approximation was
based on the well known fact that the
extrinsic information can be well represented
as a Gaussian random variable as the number
of iteration increases. The message passing
expression for sum-product algorithm was
developed in [5] and its approximation was
also introduced. This approximation was used
for the density evolution based on the
min-sum algorithm in [3]. The probability
density  function  for  the  min-sum
approximation was derived and the computed
min-sum capacities(thresholds) were compared
to those of the sum-product algorithm.

As pointed in [3], next question is to
combine the Gaussian approximation with the
min-sum algorithm. Empirically we know that
performance of sum-product algorithm is
better than that of min-sum algorithm. It is
interesting to know if this characteristic is
maintained under the Gaussian approximation
for the passed message. In this paper, the
density evolution of min-sum algorithm
under the Gaussian approximation is
presented and the capacities of both decoding
algorithms are compared. If we assume the
symmetry condition Ax)=A—x)e* for a
Gaussian probability density function Ax) as
in [4]]2] under the sum-product algorithm,
the variance of Gaussian density can be

represented by two times of the mean.
However, the symmetry condition does not
hold in the min-sum algorithm. Therefore, the
variance as well as the mean should be
computed during the iterative density

evolution process.

II. Sum-Product algorithm under a
Gaussian approximation

A (d,,d.) LDPC code can be represented
by a bipartite graph which consists of
variable nodes with d, edges and check
nodes with 4, edges. A (3,6) LDPC code
bipartite graph is shown in Fig. 1. The

exchanged messages on the graph are the
Log-Likelihood Ratios (LLRs).

Variable node
. . +pari
(information parity bits)

Fig. 1. Bipartite graph of (3.6) regular LDPC code

The output messages from a variable node
is represented by v and the messages from a
check node is represented by u. Based on the
sum-product algorithm, the messages from
the variable and check nodes are represented
by

d,-1

v=A .+ Zl u; )
tanh () =tanh(-24). .. tanh () (2)
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Copyright (C) 2003 NuriMedia Cg\_/}/\ﬁ%dbpia.co.kr



G A8 =8 x| 03-10 Vol.28 No.10C

where A _ represents a received message

from channel and the message from the node 10° pre A A A
receijving the output message is excluded. " (Sum-Product) (_m) 1
Because of the independent and identically
distributed assumption [1],[2] for messages, w2l

we omit any time index in the message

representation. With the gaussian § 10 r

approximation [2], it is only needed to ;

compute the mean and variance of exchanged ot e 05

messages recursively. In addition, based on ool

the symmetry condition Ax)=A—x)e* [1] 06548 .

for the density Ax) of an LLR message, the 10° ol - =,
variance can be represented as two times the Eb/No (dB)

mean. As a result, we need only to track the
mean of a gaussian density.

By taking expectation on both sides of eq.
(1), the message from a variable node is

Fig. 2. Simulation results and thresholds of regular

(3.6) LDPC code for block size N= 10000
with Min-Sum and Sum-Product algorithm

=T (d, - ny 05 Mue | On-3
B q rate (f,”dB) (f,de)

where x denotes the mean of random o °
. . 316 | 05 108740 (1.17) | 0.8100 (1.83)

variable x. Similarly, we can take the

) . 418 05 | 08318 (1.06) | 0.7405 (2.61)
expectation on both sides of eq. (2). To 51101 05 107907 (204) | 0.6942 (3.17)
simplify the notation, we define ¢(x) as: 3151 04 09999 (09D | 0.8036 (1.85)
416 ] 1/3 11.0036 (1.73) | 0.8631 (3.04)
o _y=w? 3141025 |1.2517 (1.06) | 1.0827 (2.32)
W= [ tanh(%)vlfe i 4[10] 06 | 0.7437 (L78) | 0.6767 (2.60)
Jome 4y 319 | 2/3 0.7047 (1.79) | 0.6800 (2.10)
= E[tanh(—zl)] 5[12] 0.75 { 0.6294 (2.26) | 0.6165 (2.44)

then,
check node can be represented as:

the expectation on the message from a

$Cw)=¢Cv ) (v 4 )

Then we can obtain # by taking inverse
o)

effectively, we usc the

function ¢ ~!( - ). To calculate the

and ¢ 71(-)

following approximation which was used in

[2].
L f& T, 13,
A e @ o x)' x>10

i
Mx)z{l—e"“‘v” x<10
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Table 1. The Threshold on MIN-SUM and
SUM-PRODUCT algorithm for various pairs

(d,,d.)

a=-—10.4527, [B=0.0218, and
7y=0.86. By initially setting  to zero, we

where

can recursively update the mean of each
message until it converges to a finite value
or goes to infinity. When it goes to infinity,
it means that the density tends to a point
mass at infinity or equivalently, the
probability of error tends to

threshold is calculated as the maximum noise

zero. The
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level (i.e, minimum SNR) from the channel
such that the probability of error tends to
zero [1],[2].

The thresholds, which are calculated by the
above method, are shown in Table 1 and the
simulation results for the case of
(d,,d . )=(3,6) is presented in Fig. 2. The
computed threshold .is well matched to the
waterfall region of simulation curve.

M. Min-Sum algorithm under a
Gaussian approximation

The density evolution techniques in the
literature can be classified based on the way
of tracking the demnsity function of extrinsic
information. One approach is a quantization
of a density function and apply the density
evolution equations approximately [1]. The
other approach is to quantize messages and
track probability mass function [6]. To avoid
these complex computations, a Gaussian
approximation approach was introduced in
[2], which reduces an infinite dimensional
problem into a one dimensional problem.
With this Gaussian approximation, it is only
necessary to track the mean and variance of
the exchanged extrinsic information.

Combining this Gaussian approximation
with the recent work in [3], a simpler
min-sum density evolution technique is
presented. For regular (d,,d,)  LDPC

codes the min-sum message passing algorithm

at variable and check nodes is represented by
4.1

UZAC+ 2 u, (3)

u=sign(v;-~v a~ominllv |, v, 1] (4

where v is the Log Likelihood Ratio (LLR)
output from variable node and # is the LLR
output from check node and A, represents

the received message from the channel.

This min-sum message passing algorithm at a
check node was shown in [5][7][3]. According
to this expression, the output message from a

check node can be represented by the sign of
the product of the incoming messages and the
minimum absolute value among the incoming
messages, where the message from the node
receiving the output message is excluded.

On the min-sum density evolution with a
Gaussian assumption, our goal is to track the

mean v, # and variance 6%, 0% of the
LLRs during the iterative decoding. With the

independent and identically distribution

assumption for the exchanged messages, v

and 0% can be obtained from (3) as:

v=A.+d,~Du (5)
oi=0% +(d,~Dd? (6)

The calculation of # and 6% is more
d =3, the probability

density function (pdf) of the output message
from a check node based on (4) was derived

involved. When

in [3] as:

f =7, @Q0-F, )+f, (00-F, ()
T/, (0F , (=0)+f, (—0F , (=),
x>0 (D

flo=F, DA-F, (=) +7/, (01-F, (~x))
+ oy (—0F , (+f,, (=2F, (x),
x>0 (8)
where f(x) and F(x) are the pdf and
the cumulative density function (cdf)
respectively. For the case of d,>3, f (%) is
obtained by recursive update with additional

pdf fyi(x) up to 1=d . —1 as:
fLxn)= GCG(G(f, fu ), fo) i fu, )

where G(-) a shorthand notation of
(12)-(13), which is the pdf of the output
message for the case of 4 _=3.

(-1 20~ 1)
A

Once we have v at

/— 1 th iteration, the mean and variance at

[ th iteration are tracked asl)
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v (l*l)’ 0.2u(l— IL)f(Vl*l),F_(Ulfl)*,f(ul—l)
S D G201 (0 62D

Using the Gaussian assumption on y, the
pdf and cdf fU"U F{~D are obtained
from v “—1),020(1_1)‘ Then, the pdf
£~V is obtained by (5)-(6). The mean and

variance (1"1),02;1_1)

are numerically
(-0
fu

at / th iteration is obtained by

calculated from

7} (l), O'ZV(I)

Finally,

(7)-(8). The iterative mean and variance
tracking is initialized by the received message
from channel as:

7 O="7
V=g =277,

This recursive calculation is executed for a
sufficiently large number of iterations (e.g.,
1000) to determine whether the message
converges to correct codewords at a certain
channel noise level. The convergence is
determined when the probability error,

equivalently the tail part (v<(0) of the pdf
f ,(x) goes to zero. The threshold is defined
as the maximum channel noise level for

which the message converges. Table 1 shows
GA

the computed thresholds ¢ ;s based on
the described min-sum algorithm for various
pairs (d,.dJ. The

E /N, values in dB are shown inside

corresponding

parentheses. For comparison, the thresholds
0‘%4,, ITuct Of sum-product algorithm are also

shown in the samemanner. Fig. 2 shows the
simulation results and thresholds for regular

1) 1)) In [3] and [8], the pdfs are tracked as :
FUT I U=, 2 (D without
assumption.

940

Gaussian

(3,6) LDPC code for block size N=10000 with
min-sum and sum-product algorithms. The
difference of thresholds (0.65dB) is well
matched to the difference of simulation
performance  (0.5dB). The gap (0.15dB)
between the thresholds and simulation
performance is due to the fact that the
thresholds is obtained on the infinite block
size and iteration numbers.

Fig. 3 shows how the mean of output
message is evolved from thc mean of input
message at a check node based on two
different massage evolution algorithms. A
check node which has two inputs and one
output(i.e three edges) is considered. Fig. 3
shows the output message mean when one of
the input mean varies from 0 to 40 and the
other of input mean is fixed at 20. We can
see the output mean converges to 20 which
is minimum value of two input means for
both cases. However, the output mean of
sum-product algorithm converges faster then
that of min-sum algorithm.

IV. Conclusion

In this paper, the density evolution of

min-sum algorithm under the Gaussian

.-”A‘"
o'd

L -
g 15F o .
. - p
] L
g L
o 10 J
M L
°
o
c
-
s 5[ - sum-product) |
3 =8~ gutpit{min-sum) 4

]
1) AT PEW e N w | Il P P | 1 ]

Fig. 3. Evolution of input message at a
check node for two massage evolution
algorithm (sum-product vs. min-sum)
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approximation was presented and applied to
various rate LDPC codes. This simplified new
evolution technique can be used to obtain the
capacities(thresholds) of the LDPC code. The
capacities were computed based on the
min-sum algorithm and were compared with
the thresholds based on the sum-product
algorithms. It was also shown that the
computed threshold was well matched to the
simulation result.
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