DEri=

=i 04-29-1A-6 S F A8 8] =8A ‘04-1 Vol.29 No.lA
5 78 deuldo] vlojelg] Ael%

A9 7 4 5, S34 ol g A, A 3] 4 9

A Block Structured Multimedia Data Prefetching

Suk-Ju Kim* Regular Member, Byung-Kwon Lee** Associative Member,

Suk-Il Kim** Regular Member
R o}

~EdY Fuz o= dguihe] 28 deldHi FUA AGHE F uia Ad A9yl
e 540 Ak o wRAME B HUE /WL AEsad ANH A9ge dou FuY Ao
of gl Wevirle] 84 dolelel WAR Wwe Fze) FAYL BEsE AHE AL 53
Ate ZlYe Weg AL $RoR Lra AL $RUE AL St 88 T2299 A4 7|
Eo| wat mste] MelE olelg A FU 4 Ui KAl Atk of@ 7HH virlo] WA v b
@ Ad A3 ALE sge] /& MAF sl stel MAF el w4 5k AA AME AL
gag + Aeh

ABSTRACT

As to medium data which is involved in the form of streaming for a multimedia application, it characterizes that
spatial locality occurs strongly but temporal locality appears even weaker. In this paper, with regard to dynamic
prefetching, we suggest a method to make the most of memory reference regularities which typically innate by nature in
the multimedia data with strong spatial locality but with weak temporal locality. Especially, the suggested method has a
remarkable capability such that it can reduce prefeching errors substantially compared to existing prefetching methods for
an application program which divides an array into small sub-blocks and, plus executes in the unit of sub-block. We
carried out experiments to test the suggested method using various MediaBench benchmarks. From the results, we have
confirmed that the occurrences of prefetching error decrease effectively than those of existing linear prefetching methods.

1. Introduction doubles regularly in every 18 months.
However, memory speed has been improved
Referring to Moore's law, processor speed with the rate of only one tenth a year. From

* A Hefat #3Fe - Welv|c]e] A (kimse@hccackr) ** SEEkn A7) H AP 25 8

714 4l (ksi @ cbucc.chungbuk.ac.kr), ©]*¥l(sonic747 @ just.chungbuk.ac.kr)
=5 % : 030398-0015, #5:al} : 2003+ 9¢ 159
% o7 gEmlahAe 227) 29 7{R05-2002-000-01470-0) 2| 102 sl

53

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

F=F A3 =54 ‘04-1 Vol.29 No.lA

this gap, fast memory reference time becomes
more crucial for sustaining the throughput
upturn in the modern processors[”. According
to Fritts[1], memory reference time will take
up a 25~50% on all execution time.

More than ever, multimedia applications
increase for many reasons, to name a few,
image/video compression, WWW and etc.
The data related to multimedia application
often have the form of large scaled array or
streaming patternsmm. This means that the
required amount of cache system is much
steep for obtaining a satisfying performance
in multimedia applications.

For a problem involving references to data,
it shows that an amount of required data
increases sharply at one point. It is unlikely
that the data required this way would be
found in the cache. Concerning cache
management, even after an event of
replacement, the replaced data block is
improbable to be looked for again before its
removal. This is conflicting with the fact that
caches work ordinarily on the basis of the
temporal locality of program behavior' ",
Deteriorating performance stems from that
memory reference is done in streaming
patterns.

To deal with this problem, we concentrate
our efforts on exploiting more refined pattern
of memory references. In general, there is a
good chance that multimedia data has a
commanding locality in it 4ol And, memory

tends to show an exceptionally
[31(6]

reference
strong regularity on all streaming data
The reason is that the majority of multimedia
operation is particularly simple in practicing a
routine over multimedia data. The structure
of data with streaming patterns usually
represent array format and iterative block
structure is positively prevailing concerning
the means of handling arrays. That means by
all means memory references also rely on
and reflect those simple block patterns.
Prefetching systems give option about how

54

Copyright (C) 2003 NuriMedia Co., Ltd.

to introduce new necessary block to cache
systemm["’. In recent years, a dynamic
prefetching unit has heen used as well
alongside with original cache controller™'",
Dynamic prefetching unit is known as an
effective remedy for the problem that seems
to be common in multimedia data access:
unnecessary data takes up too much cache

incidental way"2.

space accidental -or
Dynamic prefetching unit is literally intended
to bring a designated section of memory into
cache in advance in order to meet the
possibility of cache miss going over previous
several references.

Our approach is to identify and confirm a
block structure and relate the block structure
to deciding a feasible block to be used. We
propose a dynamic prefetching method which
features regulations for catching up a block
pattern through memory access process.

In section 2, we give a little information
about some data prefetching methods related
to our research. Especially, we figure out
reference prediction technique (RPT) devised
by Chen"',

In section 3, we present a block reference
prediction techniqgue(BRPT). The feature of
BRPT makes a difference in detecting strides
changing according to a block format.
Combined with typical rule, because of a few
expanded controls over stride-changes, BRPT
puts out proper prefetching address in most
cases.

In section 4, we present experiment results.
Experiments on the incidence of cache miss
and the memory cycle to handle the cache
miss indicate that BRPT is better than RPT
in most occasions.

In section 5, we reached conclusion' that
suggested BRPT might be an especially good
source for better performance considering that
memory referencing to a sub block form is
very common to multimedia applications.

www.dbpia.co.kr

ER/8% 72y Wen el dolHe AE

II. Related Work

For dynamic prefetching, hardware
observes memory reference instructions and
generates prefetching instructions under the
guidance of certain rule. In this section, we
explain about the working of some

prefetching methods available at present in

industry.

Those are one block look-ahead prefeching
(OBL)' "“, multiple block look-ahead
prefc—:tchingI ':”. and reference prediction

technique!"”.

One block look-ahead prefetching (OBL)
[13] is to prefetch one neighbor block with
the demanded block reference. Thus, OBL
actually requests upto two blocks at the
same ftime. This feature of OBL would
improve the performance dramatically while
cascade memory Dblocks are refernced
conseqentially, since no cache miss ocecurs
except beginning of the computation.
prefetching block is
deterministic, the block can not be referenced

However, the

if memory reference patterns are not
sequential. Such blocks cause a cache
pollution, which implies an unnecessary and
harmful cache replacement.

The cache pollution problem can be solved
equipping a buffer between the memory
blocks and the data cache™”. The buffer
temporarily stores all the prefetched blocks,
and only the actually referenced blocks are
moved into the cache. Thus, no unneccessary
blocks can exist in the cache. Furthermore,
we can request multiple block prefetch
without any cache pollution by increasing the
buffer size. However, we have to encouter a
buffer block replacement policy to provide
high performance. And the effectiveness of
the buffer is still limited to applications that
refer the memory blocks in sequential pattern.

Reference prediction technique RPTY is
to determined the prefetch block of a certain
distance with a demanded block. The distance

Copyright (C) 2003 NuriMedia Co., Ltd.

is calculated according to the previous
references. Thus, this approach would provide
superior prefetching hit for
applications, since media data reference
patterns in these applications are mostly
linear. However, this approach still has
weakness in expecting of prefetcing blocks
whenever a big media data is partitioned into

multimedia

multiple sub-data and every sub-data is
referenced by the application. More details
will be discussed in the section 3. We
propose a new methodology to expect
prefetching blocks even sub-data referencing
is used.

IM. Introducing New Techniques

3.1 Prospect of an additional regularity
RPT utilizes regulations with regard to the
address of memory reference over the
application program’s run. Most applications
can make a quality performance because they
refer data elements with regularity. But, RPT
has an inescapable shortcoming. It is that
RPT interprets the regularity of memory
address with the norm of 1 dimension.
Because many applications involved in image
handling or processing tend to engage the
data represented with 2 or even higher
dimension, the performance has a barrier with
RPT. Fig 1 displays an example for the
defect of RPT.

Such as JPEG encoding standard in which
applying of DCT is supposed to be conducted
by the unit of 8x8 pixel matrix for a given
image, many multimedia applications will be
based on those individual sub-blocks, across
the data, rather than on the total acquired
data during their executions. This is an
eligible policy to guarantee the transferablility
of the submission of one module's work to
any other operational module in a multimedia
application.

www.dbpia.co.kr

#5283 =74 ‘04-1 Vol.29 NodA

| B o e e

ABuI Ll
(b) column-wise access
with sub-blocks

(a) column-wise access

i

o P

o [14h
o 1T

DO

(¢) access pattern—1 (d) access pattern-2

Fig 1. Examples of memorv reference

Fig 1(b) shows that data represented on a 2
dimensional array with the size of 16x16 is
divided into sub-blocks with the size of 8x8.

Looking to Fig. 1 (a) and (b), this is a
visual representation for a potential formation
of memory references. Each cell represents a
data element occupying a memory space.
Without generality loss, we assume sequent
memory address increases as row order in
the memory space, and the succeeding
memory address appears as adjoining cell in
the right side in a row.

Comparing Fig 1 (a) and (b), vou can see
the shortcomings of RPT in case of
sub-block in question. In Fig 1 (a) and (b),
for each block, memory access is done
successively in column by column order.
Those access patterns may come up for a
second matrix operand in matrix
multiplication. The cell with pale color
represents the situation in that prefetching
address is proved not correct. Successful
prefetching is represented as darker cell.

In case of access pattern in Fig 1(b),

56

Copyright (C) 2003 NuriMedia Co., Ltd.

regularity of memory referencing degrades
compared to (a). The sequence of reference
memory address undergoes a breaking change
by the very nature of array format as a new

From this
accuracy of

row or column corresponds to.
particular instance, the
prefetching based on RPT decreases.

Because RPT decides a stride by looking
at past trends, to mark a suitable stride, it
must find at least two times of same
distance in the successive memory references
for a subjective memory reference instruction.
This number of two occurrences must be a
full complement of a stride properly marked.
The value of the stride should stay right
what it is, not changing it until finding out
another value of stride. Even if a mismatch
takes place one time, the marked stride
should not change with the expectation to
follow for the stride instead of the new
value. This policy is advisable because you
still have the prospect of informative stride
unless you have failed twice.

This simple regulation makes prefetching
easy. However, this is definitely is not
sophisticated enough to sort out block
patterns. More continual prefetching errors
are occurring if sub-block pattern prevails.

In Fig 1(c) and (d), the number on a data
element corresponds to the order by which
the element have been chosen. In the RPT,
out of the differences of the referenced
memory addresses, it will find a stride and
forecast on the next memory address and
prefetch it as long as the stride remains
unchanged.

Fig 1(c) numbers strides in the sequence:
88, .. ,(-B4), 8, 8, ..(-54). In this case, the
next memory address can be forecasted as
long as stride of 8 stays same. But, at the
moment stride changes to-54, no forecasts
will be possible because of the break of
regularity. Fig 1(d) shows a different pattern,
but with the same context as Fig 1(c), the
strides appear to alternate in sequence.

www.dbpia.co.kr

wE/EE 728 WE Ve HeolHe HMAF

Much of multimedia applications including
audio/visual processing and MPEG
encoder/decoder acquire some improvement
by pulling in a wide variety of resources
through various levels and measures. In this
many-sided problem of enhancing, in terms
of the significance of the structure, for an
example, one method™ observes incidence of
area-linked metamorphosis along DCT
process and detect the sign of sparse matrix
format targeting to alleviate computational
cost in the motion estimation step in MPEG
encoding.

At work, such type of enhancement is
prone to be tied to specific purpose or require
a particular hardware which combines the
unique characteristic with good results. With
the help of our suggested method, there is
possibly room for a particular method or
hardware to get further improvement of
performance because our suggested method
aims anything different, that is to improve
cache performance separately and apart from
the special method.

3.2 Collecting another frequently-changing
stride
In Fig 2, reference prediction table has 4
main components. The stride segment shows
the distance of the data under consideration.
The state field supports the acquisition of
proper stride. Such reference prediction table
has an additional field to mark a state in a
conjectural procedure for making stride right

tag | previous_address | stride state
it

(a) Reference Prediction Table by
Chen[9]
L L;

tng | previous_address

stride | state stride state

Copyright (C) 2003 NuriMedia Co., Ltd.

on. The tag field corresponds to the program
counter of the instruction which has been
chosen. It is used for the distinction of each
memory reference instruction. Over duration
of repetitive references, a memory reference
instruction can bring about a change in
stride. In order to get a correct stride, a field
for storing the previous referenced address
for the corresponding instruction is required.

For existing RPT, the table has one
stride field and one state field. For our
suggested method, the corresponding field
expands to have two fields. Fig 2 shows
comparisons of table of RPT vs. table revised
by our suggested method.

L1_stride field is updated in time of the
repetition for a memory reference instruction.
If the value of the field remains unchanged,
L1_state field has the value of steady. If once
unchanged Ll_stride field changes, L1_state
field switches to init which tells that the
regulation becomes lost. At the same time,
the value of Ll_stride is to be copied to
1.2_stride field.

By the same way, whenever the value of
L1_stride does not conform to the regularity
established already, it is copied to L2_stride.
By this means, the regularity such as 88,....8
can be noticed by L1 fields and the
regularity of -54 can be marked by L2 fields.
Therefore, it may be considered that relevant
regularities are detected throughout the whole
memory reference.

3.3 Reckoning of prefetch address
Moon"™® talked about the background
information that will be effective to check out
2 or even higher dimensional block pattern.
We find it easy that a sequence of successful
prefetching by a regular stride conveys a
message concerning the number of elements
on a possibile row or column in block format.
To recognize a block format, BRPT
collates the number of times in that a certain
stride keeps up and steady hit of prefetching

57

www.dbpia.co.kr

25288 =84 04-1 Vol29 No.lA

address continues. Then, it automatically
produces a correct prefetching address
discerning a new round according to the
block format.

The practicability of BRPT can be stated:
it forecasts the variations of strides in a
successive memory reference separately-yet
without any association or link to controlling
structure such as history of branch
instruction.

Fig. 3 shows an example for how BRPT
proceeds. (Without loss of generality, we
assume the stream of data is reference by
row order.)

L2_state of first-change mode means that
you are in the second row. So, when L1_state
changes from initial to steady (You will have
this change of mode if the next element keeps
the L1_stride.), we have the clue to know of
the number of elements in a row. Evervtime
as new memory reference is made, if
Ll_stride keeps unchanged and therefore
L1 _state is maintained as steady, and
temporary variable hit_count is increased by 1.

The variable hit_count eventually records
information related to number of element of
the row. If L1_state becomes to be initial,
this indication is interpreted as the beginning
of third row. Therefore, still unchanged
previous_address belongs to the last element
of the second row and this value is stored in
a variable temp_base, for the purpose of
some checking for the 2 dimensional array
structure which will be mentioned soon.

At this moment, L2_state of first-change
makes to transient. Also, the difference
between current referenced address and
previous_address (presumed as the last
element of the second row) is kept into
LZ_stride field And also, update to
previous_address is done and the next
reference will be made.

In the situation with transient L2_state,
every time LIl_state changes to steady and
stays as steady state, variable hit_count is

58

Copyright (C) 2003 NuriMedia Co., Ltd.

decreased by 1. Therefore, in time hit_count
becomes to 0, this sign indicates current
referenced data takes the position corresponding
to the last element of the third row.

In this moment, we go through a test for
recognizing the structure of 2 dimensional
array format. This test is done by comparing
the difference between currently referenced
address .and temp_base to the difference
between temp_base and address_keep.

If both of two values coincides, same
distance at the breaking point (the occasion
in which steady L1_state is replaced with
initial) can be looked as that row-changing
stride supposedly repeated twice and the
number of element in this turn (supposedly
row) Is reached to the number of previous
turn(row), although it is not certain that
there still remains more elements suitable
with L1_stride.

At this moment, the best thing you can do
is to conjecture that you have found the
regulation of 2 dimensional array structures.
Here, you regard the current address as that
of the last element of the third row. L2_state
replaces transient by steady. Applying the
value of L2 _stride recorded previously,
prefetching instruction becomes to be issued.
But you do not know if the prefetching
address using L2_stride instead of L1_stride
is appropriate.

L1_state
'
Lz—ﬂiis. it .ra-mf sy Seeoy
' 1 ' Al
s ka1
e+ s6 78 401051
rE geay meay SeAV meey Say SR
' ¥ ' e
first—

transient

b 232311}
DR B

'fmt"'é:' "2{7‘:”1 wE—E

thot g1

(-8

transient

v

Fig 3. Example of memory reference

www.dbpia.co.kr

EE/EE 72Y WHVHO HojEe HUE

Set_prefetch_address() {
if (flag for applying L2 stride is set)
prefetch_address=address+L2_stride;

}
adjust_temporary_value() {
if(L1_state is INIT)and(L2_state is FIRST-CHANGE)
address_keep= previous_address;
if(L1_state is INIT)and (L2_state is TRANSIT)
temp_base = previous_address;
max_hit_count=hit_count;

hit_count++;
if(L1_state is STEADY) and (L2 _state is TRANSIT)
if((--hit_count) is 0) and
(address is (2* temp_base — address_keep))
set flag for applying L2_stride;
L2_state=STEADY;
address_keep=temp_base_address ;
temp_base=address;
]
update_state() |
if(L1_state is STEADY) and (L2 state is STEADY)
L1_state= INIT; L2 state =TRANSIT;

diagram,

if{(L1_state is INIT) LI _state= FIRST-CHANGE;
if((L1_state is FIRST-CHANGE) L1 _state= TRANSIT;

otherwise prefetch_address=address+L1_stride;

if(L1_state is STEADY)and (L2 state is FIRST CHANGE))

update L1_state according to the rule shown in transition

As this update proceeds, if there is a change STEADY to INIT

Update_stride() {
if(L1_state is INIT) and (L2_state is TRANSIT)
L2_stride=address-previous_address;
In case prefetching was correct,
if((L1_state is TRANSIT))
L1_stride= address-previous_address;
In case prefetching was incorrect,
if((L1_state is TRANSIT) or (L1_state is NO_PRED))
L1_stride= address-previous_address;
]
Block Reference Prediction |
For a coming memory reference instruction,
conduct its operation.
Using PC address of the instruction as tag,
Seck out relevant slot in RPT.
If there is no corresponding slot,
Reserve one slot (either replace one or
assign a vacant slot)
Comparing prefetching address to current address of
referenced element,
check out whether prefetching is correct or not.
Update L1_state and L2 state(call update state()).
Update L1_stride and L2_stride(call update_stride()).
Set temporary variables necessary to searching for 2
dimensional array structure
(call adjust_temporary_value()).
Set prefetching address(call set_prefetch address()).
Issue prefetching instruction if necessary.
Replace previous_address field with current referenced
address.

}

Fig 4. Block Reference Prediction Algorithm

You will get the actual memory address as
you move on to next element. If this address
is matched to the prefetch address, this
implies that the currently referenced address
can be regarded as that of the first element
of the fourth row.

You can keep up going after further
continuous data streams and see if this may
be a set up of 2 dimensional array format.
Thus, the value of temp_base moves into
address_keep and the wvalue stored in
previous_address goes to temp_base.

Also, value stored in max_count replaces
hit_count. The steady of L2_state is forced to
switch to transient state. Those moves are
intended to prepare for sorting out
forthcoming references.

The same procedure for identifying another

Copyright (C) 2003 NuriMedia Co., Ltd.

row continues as described above.

During the whole procedure above, at the
occasions which do not keep a promising
sign for finding a 2 dimensional structure, for
one, bothering in the counting down on
hit_count to zero or stray from the conditions
with temp_base and address_keep, transient
L2_state turns into initial. This means that it
is going to scout to pick out another possible
2 dimensional array structure and goes on
with above procedure again.

Fig 4 shows an outlined algorithm of
Block Reference Prediction. It shows the
working of BRPT unit including how to
observe the sequence of referenced address
and get L1_stride and L2_stride and apply
each feasible and corresponding stride
depending on the location in a block format if

59

www.dbpia.co.kr

o583 =FA '04-1 Vol29 No.lA

A rogram ;i] image/frame
description o data source input size | . ol
module size
transforming image frames of]
tool for Hpegti Y.U.V format
MPEG i i e 4 frames 256%242
digital video mpeg video
mpeg2dec
stream streams
; ; image files of
compression cjpeg bt
IPEG standard for u 100Kbytes | 172%189
gl i image files of
Jpg format
: 3 image files of
s iy raw format
EPIC compressing ; 60Kbytes | 256x256
: image files of
tool unepic
.E_format

Table 1 Benchmark programs

such format were recognized.

The state of BRPT unit changes according
to the rule shown in update_state() routine in
Fig4. In the routine, as L1_state changes
from steady to init (at the time L1_stride
does not prove it correct), L2_state becomes
assigned different value over the procedure to
get L.2_stride as shown in Fig. 3.

In this process, the unit keeps temporary
values such as hit_count, temp_base address,
max_hit_count and address_keep as shown at
the routine adjust_temporary_value() of Fig.
4. Those values are required to find block
pattern.

The value of (address-temp_base) holds
the current distance between the elements at
that the L1_stride becomes disrupted If this
value is equal to such previous distance
(temp_base-address_keep), we can know that
the distance repeats and a block pattern
appears supposedly. The value of hit_count
and max_hit_count relates to how many
times L1_stride goes undisturbed. As the unit
gets a right L2_stride, it can also decide the
time to apply whether L1_stride or LZ2_stride
using those values.

IV. Experiments

To analyze the performance of BRPT, a

60

Copyright (C) 2003 NuriMedia Co., Ltd.

trace-driven simulation was carried out on
Digital Alpha DEC machine to model cache.
The initial phase of the experiment is to
generate the instruction trace of an
application program. Using this trace as
input, it moves forward to simulate the cache
operation.

For obtaining the trace, we wused the
ATOM simulator” for analyzing benchmark
object codes of Alpha
machine. The simulation part for cache

programs using

operation was implemented based on Dinero
m™ which is a trace-driven simulator
developed by Univ. of Wisconsin.

The simulator was designed to receive
information about the trace of memory
reference instructions and gather data for the
memory frequency for each
load/store instruction, cache miss rate and

reference

other measures of cache.

To compare BRPT with other prefetching
mentioned earlier, we made
transformation to the cache simulator to
accommodate different methods. General

scheme in the chart represents that there is

methods

no wuse of any prefetching. For the
benchmark, we selected MPEG, JPEG and
EPIC from Media Bench™™ benchmark. Table
1 shows detailed specifications of

benchmarks,

www.dbpia.co.kr

=E/E5 T2Y dEugo] Hojge M

—e—GENERAL | Mpeg2dec
—&—0BL
STRM
s RPT
—#—BRPT

casge size
32k 64k 128k 256k

ok 4k 8k 16k 32k 64k 128K DAk

2k 4k 8k 16k 32k 64k 128k 256k

g
s

mpeg2enc

O = NWsrOO N

csa size E
2k 4k Bk 16k 32k 64k 128k 256k

[ratio —&— GENERAL unepic

—8—0BL
4 STAM
g AR A

—¥— BRPT

ok 4k Bk 16k 32k B4k 128K DEER

Fig 5. Cache miss improvement ratio

We made the evaluation in terms of two
indices: cache miss rate and the cycle time
for deferring to settle cache miss. Fig. 5
displays improvement ratio of cache miss
frequency. This value has how much the
corresponding prefethcing scheme might be
better in terms of cache miss frequency than
basic scheme that represents no use of
prefetching.

In the below equation (1), CM.LR. shows

Copyright (C) 2003 NuriMedia Co., Ltd.

the cache miss improvement ratio of the
scheme.
C.M.I.R.=—C-£Eﬂc—— (1)
THE SCHEME
where C represents the cache miss
frecuency.
In terms of total memory cycles required
to settle cache miss, we investigated with a
similar method. The results of another index,
the sum of deferred memory cycle time,

61

www.dbpia.co.kr

L 2 A8 3] = A] ‘04-1 Vol.29 No.lA

showed up as almost same form as the
charts in Fig 5. However, the improvement
ratio of differed cycle appears with a slightly
bigger percentage than that of the cache miss
improvement ratio for each case.

We compare BRPT to RPT, using two
indices. Fig. 6 shows cache miss- reduction
ratio : R, and memory cycle-reduction
ratio ¢ Ry

i C ger— C arer

: C ger
where C is the cache miss frequency.

D upr—1D
o RPT BRPT
Ra T e

where D is the deferred memory cycle
time to settle cache miss.

In case of mpeg2enc, BRPT has the most
favorable outcome. It looks like that abundant
regulations in the data before compression
procedure make for the good result.

Comparing BRPT and RPT, throughout all
benchmarks we have dealt with so far, R,
points to an average reduction of 4% in
terms of cache miss frequency. BRPT
outperforms RPT by 4%.

R, measures average 5% having a
positive effect on reducing memory cycles.

The reason for why the effect of BRPT
measures differently in two indices may be
related to exact timing at which prefetching
instruction is issued and processed, that is, to
bring memory block to cache actually. We
will investigate further on this. From above
indices, BRPT based on regulation seeking
out 2 dimensional array form is expected to
be better than RPT in most multimedia
applications. Specially, for applications such
as mpeglenc and mpegZdec, it makes for
attractive option.

62

Copyright (C) 2003 NuriMedia Co., Ltd.

Reduct
018 rate

cleeg dineg mpeg2enc mpeg2dec apic unepic

Fig 6. Relative qualities of BRPT

V. Conclusions

BRPT exploits a recognizable block pattern,
which appears more in multimedia
applications. BRPT and RPT have much in
common; both have notion of predicting
pefetching address based on stride. To check
out the feasibility of BRPT, we examined on
cache miss rates and memory cycles using
benchmark programs in Media Bench
benchmeark. BRPT outdoes RPT in most
cases. By logical reasoning, BRPT will
become more effective of the two in the
applications with more abundant occasions of
block patterns.

Reflecting fact that a size of application
enlarges and array size increases so quickly,
BRPT is estimated to be beneficial and
effective to make memory access time
declined in multimedia applications.

REFERENCES

(1) J. Fritts, "Multi-Level Memory
Prefetching for Media and Streaming
Processing,” Proceedings of International
Conference on Multimedia and Expo,
pp. 101-104, August, 2002

[2] -8, Carr, K, 'S, Mekinley: and C. W.
Tseng, "Compiler Optimization for

www.dbpia.co.kr

EE/85 723 et deolHe HiE

Improving Data Locality,” Proceedings
of 6th International Conference on
Architectural Support for Programming
Languages and Operating Systems,
pp. 252-262, October, 1994

[3] M. E. Wolf and M. S. Lam, "A Data
Locality Optimizing Algorithm,”
Proceedings of SIGPLAN'91 Conference
on Programming Language Design
and Implementation, pp.30-44, June,
1991

[4] J. R. Goodman, Cache and Sequential
Consistency, Technical Report TR-1006,
University of Wisconsin—-Madison,
February, 1991

[6] F. Harmsze, A. Timmer and].
Meerbergen, "Memory Arbitration and
Cache Management in Stream-Based
Systems,” Proceedings of the DATE
2000, pp. 257-262, March, 2000

[6] C. K. Luk, Optimizing the Cache
Performance of Non_Numeric Applications,
Ph.D. Thesis, University of Toronto,
2000

[71 S. P. VanderWiel and D.]. Lilja, "When
Caches Aren’t Enough: Data Prefetch-
ing Techniques,” IEEE Computer,
Vol. 30, No. 7, pp.23-30, July, 1997

[8] K. Diefendorff and P. K. Dubey,"How
Multimedia Workloads Will Change
Processor Design,” IEEE Computer, Vol.
30, No. 9, pp.43-45, September, 1997

[9] T. F. Chen and J. L. Baer, "Effective
Hardware-Based Data Prefetching for
High Performance Processors,” I[IEEE
Transactions on Computers, Vol. 44,
No. 5, pp. 609-623, May, 1995

[10] T. Horel and G. Lauterbach,
"UltraSPAC-III: Designing Third-Generation
64-bit Performance,” I[IEEE Micro,
Vol. 19, No. 3, pp. 73-85, May, 1999

[l1] K. D Ks Chan, < Cra G Hay, o], R - Keller:
G. P. Kupanek, F. X. Schumacher and
J. Zheng, "Design of the HP PA 7200
CPU," Hewlett-Packard Journal, Vol.

Copyright (C) 2003 NuriMedia Co., Ltd.

47, No. 1, pp. 25-33, February, 1996

[12] D. F. Zucker, M. J. Flynn and R. B.
Lee, "A Comparison of Hardware
Prefetching Techniques for Multimedia
Benchmarks,” Proceedings of Interna-
tional Conference on Multimedia
Computing and Systems, pp. 236-244,
June, 1996

[13] A. Smith, "Sequential Program
Prefetching in Memory Hierarchies,”
IEEE Computer, Vol 11, No. 12, pp.
7-21, December, 1978

[14] N. P. Jouppi, “Improving
Direct-mapped Cache Performance by
the Addition of a Small Fully
associative Cache and Prefetch Buffers,”
Proceedings of the 17th Annual
International Symposium on Computer
Architecture, pp. 364-373, May, 1990

[15] E. Feig and E. Linzer, "Discrete
Cosine Transform Algorithms for
Image Data Compression”, Proceedings
Electronic Imaging ‘90, pp.84-87,
Novemver, 1990

[16] H. J. Moon, A Cache Managing
Strategy for Fast Media Data Access,
Ph. D Thesis, Computer Science
Department, Chungbuk
University, March, 2003

[177 A. Srivastava and A. Eustace,
"ATOM: A System for Building
Customized Program Analysis Tools,”
Proceedings of the ACM SIGPLAN
94, pp. 196-205, June, 1994

[18] M. D. Hill Dinero III Cache
Simulator, Technical Report, Computer
Sciences Department, University of
Wisconsin, Madison, 1997

[19] C. Lee, M. Potkonjak, and W. H.
Mangione-Smith, "MediaBench: A
Tool for Evaluating and Synthesizing
Multimedia Communications Systems,”
Proceedings of the 30th Annual internatio-

National

nal Svmposium on Microarchitecture,
pp. 330-335, December, 1997

63

www.dbpia.co.kr

FEE 283 = F A ‘04-1 Vol.29 No.lA

2| 4 Z(Suk-Ju Kim) Asi4d
19824 24 : Algista AL Faka) 24
19841 24 : q==elr]&s] A4lsiak(g AAL
4 . FEUsta AxpAlE vkl 23
19974 9¥Y~%A): AN 2us

(FAltep WAz

0| 8 F(Byung-Kwon Lee) Z3)¢)
19994 24 : gid)sta HAA b} 4
20021 29 : gFeyshar A5rETsta(aet HAb
A FHoska Akl uba) s

(FAlEeh #HA)0l2, e T=, WEAe, o
o]z A2

21 A 2(Sukil Kim) A3
197591 © AleHista A7|F3st (S
1975~19904 : sl s
1989+ : 7= North Carolina 5}
(FshAp
1990 ~3A) : FHdiEla 3t
A7 | AAL e Ey- 2
L P = o2 AR e e e e ol e
sl BRAKISHE

(GFMlEep WEAsE = w3, HEAe
e}, A|zAelal ALgA} QlEjuflo] 5

64

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

	블록 구조형 멀티미디어 데이터의 선인출
	Ⅰ. Introduction
	Ⅱ. Related Work
	Ⅲ. Introducing New Techniques
	Ⅳ. Experiments
	Ⅴ. Conclusions
	REFERENCES

