DEri=

=& 4=20-1C=19 5 F A8 =EA '04-1 Vol.29 No.1C

Distributed Real Time Simulation
Programming with Time and Message Object
Oriented in Computer Network Systems

Regular Member *Sang-Dong Ra, *Hasun Na, *Moon-hwan Kim
ABSTRACT

Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a
distributed computer system structured in the form of an object network. Several approached proposed in recent
years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then
the approach named the TMO(Time-triggered Message-triggered Object)structuring scheme was formulated with
the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The
TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered
simulation which is to realize real-time computing with a common and general design style that does not
alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable
distributed time triggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically
simple but semantically powerful extension of the conventional object structuring approached and as such, its
support tools can be based on various well-established OO programming languages such as C++ and on
ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers
efforts in guaranteeing timely service capabilities of application systems.Start after striking space key 2 times.

Keywords: Real-Time(RT) Operating System Kernel, Guaranteeing time, Time-triggered Message-triggered
Object (TMO)

The current reality in RT computing is far
1. INTRODUTION from this desirable state and this is evidenced

whether one looks at the subfield of operating

One of the computer application fields which
started showing noticeable new growth trends in
recent years is the real-time(RT) computing
application field. Future RT computing must be
realized in the form of a generalization of the
non-RT computing, rater than in a form looking
like an esoteric specialization. In other words,
under a properly established RT system
engineering methodology, every practically useful
non-RT computer system must be realizable by
simply filling the time constraint specification part
with unconstrained default values.

systems or that of software/system engineering
tolls. Another issue of growing importance is to
provide in the future an order-of-magniture higher
degree of assurance on the reliability of
distributed time triggered simulation products than
what is provided today.

To require the system engineer to produce
design-time guarantees for timely service
capabilities of various subsystems which will take
the form of objects in OO system designs.

The major factor that has discouraged any
attempt to do this has been the use of software

*Computer Engineering of Chosun University(sdna @mail.chosun.ac.kr), **Dept. of Electrical and Computer Engineering Graduate

School University of Colorado at Boulder
=0lF : #030451-1014, A4z} 12003 104 14

Copyright (C) 2003 NuriMedia Co., Ltd.

157

www.dbpia.co.kr

g2 88] =84 '04-1 Vol.29 No.1C

structuring approaches and program execution
mechanisms and modes which were devised to
maximize hardware utilization but at the cost of
increasing the difficulty of analyzing the temporal
behavior of the RT computation performed.

Most concerns were given to the issue of how
to maximally utilize uniprocessor hardware even
at the cost of losing service quality predictability.

System engineers were more willing to ignores
a small percentage of peak-load situations which
can occur and can lead to excessively delayed
response of distributed time triggered simulation,
instead of using more hardware-consuming design
approaches for producing timeliness-guaranteed

systems.

II. General frame work for systematic
deadline handling

Client Object Server Object

L= ===

Deadline for result Domain of Guar?nleed Service
arrival communication time (server J
(Client's Deadiine) infrastructure @xecution deadline

Fig.1. Client's deadline vs Server’s guaranteed service
time

Fig. 1 depicts the relationship between a client
and a server component in a system composed of
hard real time components which are structured as
distributed computing objects.

The client object in the middle of executing its
method, Methodl, calls for a service, Method 7
service, from the server object. In order to
complete its execution of Method 1 within a
certain target amount of time, the client must
obtain the service result from the server within a
certain deadline.

This client’s deadline is thus set without

consideration of the speed of the server. During

Copyright (C) 2003 NuriMedia Co., Ltd.

the design of the client object, the designer
searches for a server object with a guaranteed
service time acceptable to it. Actually the
designer must also consider the time to be
consumed by the communication infrastructure in
judging the acceptability of the guaranteed service
time of a candidate server object.

In general, the following relationship must be
maintained:

Time consumed by communication infrastructure
+ Guaranteed service time
< Maximum transmission times imposed on
communication infrastructure +Guaranteed service
time < Deadline for result arrival- Call initiation
instant
where both the deadline imposed by the client for
result arrival and the initiation instant of the
client’s remote service call are expressed in terms
of absolute real time, e.g., 10am.

There are three sources from which a fault may
arise to cause a client’s deadline to be violated.
They are (sl) the client object’s resources which
are basiczlly node facility, (s2) the communication
infrastructure, and (s3) the server object’s
resources which include not only node facility but
also the object code.

The server is responsible to finish a service
within the guaranteed service time, while the
client is responsible for checking if the result
comes back within the client’s deadline.

Therefore, the client object is responsible for
checking the result of the actions by all the
resource involved, whereas the server object is
responsible for checking the result of the actions
of (s3) only.

M. An overview of the TMO scheme

The TMO programming scheme is a general
style component programming scheme and
supports design of all types of components
including distributable hard-RT object and
distributable non-RT objects within one general
structure.

TMOs are devised to contain only high-level

www.dbpia.co.kr

intuitive and yet precise expressions of timing
requirements, No specification of timing in terms
other than start-windows and completion deadlines
for program units and time-windows for output
actions is required. The TMO scheme is aimed
for enabling a great reduction of the designer’s
effort in guaranteeing timely service capabilities of
distributed computing application systems. It has
been formulated from the beginning with the
objective of enabling design time guaranteeing of
timely actions.

The TMO incorporates several rules for
execution of its components that make the
analysis of the worst case time behavior of TMOs
to be systematic and relatively easy while not
reducing the programming power in any way.

The basic structure of the TMO model consists of
four parts as follows:

TMO="qODS-sec, EAC-sec, SpM-sec, SvM-sec"r

Where

ODS-sec = object-data-store section: list of

object-data-store segments(ODSS’s);

EAC-sec = =

section: list of TMO-name.

environment access-capability
SvM-names
programmable communication channels, and 1/O
devices;

SpM-sec = spontaneous-method section: list of
spontaneous-methods;

SvM-sec = Service-method section: list of

service-methods.

./T__"_f'

> Capabilities for accessing
other TMO's and network
environmentincl, logical
multicast channels, and
1/O devices

> Time-triggered (TT)

-1+ Spontaneous Methods
bl o Ctul (SpM's)
Q . "Absolute time
. domain®
Deadlioes
Sarvicd PrOTT SV St g
D Lew<
Chent Message-triggered
TMO'S e e— Service Methods
R,\ (SvM's)
. i T,
il e o

Fig. 2. Structure of the TMO.

Copyright (C) 2003 NuriMedia Co., Ltd.

The TMO model is a syntactically minor and

semantically powerful extension of the
conventional object model. Significant extensions
are summarized below and the second and third

are the most unique extensions.

(a) Distributed computing component

The TMO is a distributed computing component
and thus TMO's distributed over multiple modes
may interact via rtemote method calls. To
maximize the concurrency in execution of client
methods in one node and server methods in the
same node or different nodes, client methods are
allowed to make non-blocking types of service

requests to server methods.

(b) Clear separation between two types of
methods

The TMO may contain two types of methods,
time-triggered(TT-) methods (also called the
spontaneous methods or SpM’s) which are clearly
separated form the conventional service
methods(SvM's). The SpM executions are triggered
upon reaching of the RT clock at specific values
determined at the design time whereas the SvM
executions are triggered by service request
messages from clients. Moreover, actions to be
taken at real times which can be determined at
the design time can appear only in SpM’s,

(c) Basic concurrency constraint(BCC)

This rule prevents potential conflicts between
SpM’s and SvM’s and reduces the designers
efforts in guaranteeing timely service capabilities
of TMO’s. Basically, activation of an SvM
triggered by a message form an external client is
allowed only when potentially conflicting SpM
executions are not in place. An SvM is allowed
to execute only if no SpM that accesses the same
object data store segments(ODSS’s) to be accessed
by this SvM has an execution time-window that
will overlap with the execution time-window of
this SvM.

(d) Guaranteed completion time and deadline

159

www.dbpia.co.kr

3 54133 =7 A '04-1 Vol.29 No.1C

As in other RT object models, the TMO
incorporates deadlines and it does so in the most
general form. Basically, for output actions and
completion of a method of a TMO, the designer
guarantees and advertises execution time-window
bounded by start times and completion times.
Triggering times for SpM’s must be fully
specified as constants during the design time.
Those RT constants appears in the first clause of
an SpM specification called the autonomous
activation condition(AAC) section. An example of
an AAC is "for t = from 10am to 10:50am every
30 min start-during (t, t+5 min) finished-by t+10
min”.

A provision is also made for making the AAC
section of an SpM contain only candidate
triggering times, not actual triggering times, so
that a subset of the candidate triggering times
indicated in the AAC section may be dynamically
chosen for actual triggering. Such a dynamic
selection occurs when an SvM or SpM within the
same TMO requests future executions of a
specific SpM. TMO’s interact via calls by client
objects for service methods in server objects.

The caller maybe an SpM or an SvM in the
client object. The designer of each TMO provides
a guarantee of timely service capabilities of the
object. Hefshe does so by indicating the
guaranteed execution time-window for every
output produced by each SvM as well as by each
SpM executed on requests from the SvMand the
guaranteed completion time for the SvM in the
specification of the SvM. Such specification of
each SvM is advertised to the designers of
potential clients objects. Before determining the
time-window specification, the server object
designer must convince himself/herself that with
the object execution engine (hardware plus
operating system) available, the server object can
be implemented to always execute the SvM such
that the output action is performed within the
time-window. The BCC contributes to major
reduction of these burdens imposed on the
designer. Models and prototype implementations of
the effective operating system(OS) support and the

160

Copyright (C) 2003 NuriMedia Co., Ltd.

friendly application programmer interface(API)
have been developed.

The TMO model is effective not only in the
multiple-level abstraction of RT (computer) control
systems under design but also in the accurate
representation and simulation of the application
environments. In fact, it enables uniform
structuring of control computer systems and
application ~ environment simulators and this
presents considerable potential benefits to the

system engineers.

IV. Interaction among RT objects and
RT message communicati

4.1 Non-blocking call

An underlying designs philosophy of the RT
0O distributed computing approaches is that every
RT DCS will be designed in the form of a
network of RT objects. RT objects interact via
calls by client objects for service methods in
server objects. The caller may be a TT method
or a service method in the clients. In order to
facilitate highly concurrent operations of client
and server objects, non-blocking (sometimes called
asynchronous) types of calls(ie., service request)
in addition to the conventional blocking type of
calls service methods should be allowed.
Therefore, the TMO scheme supports the
following two basic types of calls to service
methods in the server TMO.

(1) Blocking call: After calling a service
method, the client waits until a result
message in returned from the service
methods. The syntactic structure may be in
the form of

Obj-name. SvM-name(parameter-1, parameter-2,,

by deadline).

Since the client and the server object may be
resident in two different processing nodes, this
call is in general implemented in the form of a

remote procedure call. Even if there is no result

www.dbpia.co.kr

3=47/Distributed Real Time Simulation Programming with Time and Message Object Oriented in Computer Network Systems

parameter in the service method, the execution
completion signal from the server method does
not arrive by the specified deadline, then the
execution engine for the client object invokes an
appropriate exception handling function as it
would when an arithmetic overflow occurs.

(2) Non-blocking call: After calling a service
method, the client can proceed to follow-on
steps(i.e., statements or instructions) and
then wait for a result message from the
service method. The syntactic structure may
be in the form of

Obj-name.SvM-name(parameter-1,parameter-2,,
mode NWFR, timestamp TS);

get-result Obj-name.SvM-name(TS) by deadline;

The mode specification "“NWFR” which is an
abbreviation of “No-Wait-For-Return” indicates
that this is a non-blocking call. When the client
calls the service method, the clients records a
time-stamp into a variable, say TS. The
time-stamp uniquely identifies this particular call
for the service method from this client. Therefore,
later when the client needs to ensure by execution
of the “get-result” statement the arrival of the
results returned form the earlier non-blocking call
for the service method, not only the service
method name but also the variable TS containing
the time-stamp associated with the subject call
must be indicated. When a client make multiple
non-blocking calls for service methods before
executing a “get-result” statement, the time-stamp
unambiguously indicate to the execution engine
which non-blocking call is referred to. If the
results have not been returned at the time of
executing the “get-result” statement, the client
waits until the execution engine recognizes the
arrival of the results. A non-blocking call thus
creates concurrency between a client method (TT
method or service method) and a service method
in a server object and the concurrency lasts until
the execution of the corresponding "get-result”

Copyright (C) 2003 NuriMedia Co., Ltd.

statement. In some situations, a client does not
need any result form a non-blocking call for a
service method. Such a client does not use a
"get-result” statement.

4.2 Client-transfer call

Even though its needs were initially recognized
in the context of the TMO scheme, it is of
fundamental nature and may be useful in almost
all types of RT systems, Basically, an SvM ina
TMO may pass a client request to another SvM
by using a client-transfer call. The latter SvM
may again pass the client request to another SvM.
This chaining sequence may repeat until the last
SvM in the chain returns the results to the client.
The main motivation behind such a client-transfer
call stamp from BCC which require an execution
of an SVM to be made only if a sufficiently
large time-window between executions of SpM'’s
potentially conflicting with the SvM opens up.
Hence, in certain situations a highly complicated
SvM may never be executed due to the lack of a
wide enough time-window. One way to get
around this problem is to divide the SvM into
multiple smaller SvM's, SvM1,, SvMx. A client
can then call each smaller SvM each time.
Calling each smaller SvM incurs the
communication overhead of transmitting a request
to the smaller SvyM and obtaining the results.
Substantial reduction of such communication
overhead is the motivation behind an arrangement
in which the client calls the first SvM and the
latter passes the "service contract” with the client
on to another SvM and so on until the last SvyM
of the chain returns the results to the client.

As a part of executing this client-transfer call
for an SvM, the execution engine terminates the
caller SvM, places a request for execution of the
called SvM into the service request queue for the
called SvM, and establishes the return connection
from the called SvM to the client of the caller
SvM that has just been terminated. When the
"return”statement in the called SvM is executed,
the results are returned through the return
connection established. Since the external clients

161

www.dbpia.co.kr

g § 4188 =14 "04-1 Vol.29 No.1C

which called the first SvM cannot predict form
which SvM it will receive returned results, it is
implemented to accept results without having to
know which SvM the results came form.

A client-transfer call may involve passing
parameters in an explicit manner as done in
thecase of a call by an external client or passing
information through the shared data structures in
the ODS. The syntactic structure for such a
client-transfer call for an SvM may be in the

form of
ClientTransferCall(SvM_name, parameters)

SvM_name identifies the SvM being called. The
ID of the port or channel through which the
current client of the caller SvM is prepared to
receive return results is passed by the object
execution engine onto the execution support
record for the SvM being called. That is, a
proper return connection is established between
the SvM being called and the current client of
the caller SvM. The parameters may include the
parameters newly created by the caller SvM as
well as those created by predecessors in the
client-transfer chain.

There is no reason why this client-transfer call
cannot be extended to the case of calling an SvM
in another TMO. The syntactic structure for such
a client-transfer call for an external SvM is about
the same, i.e.,
ClientTransferCall(Obj_name.SvM_name,param

eters)

In fact, there is no essential need for a client
to distinguish between the case where results are
returned form the called SvM and the case where
results are returned form another SvM.

Actually, one can take the view that accepting
results returned form the called SvM is a special
case of accepting results returned form any SvM
in the system.

4.3 RT message communication and

Copyright (C) 2003 NuriMedia Co., Ltd.

programmable muiticast channels

Whether a service request is a blocking call or
a non-blocking call, the request message and the
result return message must be communicated with
predictable delay bounds. May protocols suitable
for RT message communication over local area
networks and wide area networks exist, e.g.,
time-division multiplexed access (TDMA), token
ring access, deterministic CSMA/CD, ATM, etc.

In addition to the interaction mode based on
remote method invocations, distributed RT objects
can use another interaction mode where messages
may be exchanged over message channels
explicitly specified as data members if involved
objects. See Fig.l. For example, logical multicast
channels, LMC1 and LMC2, can be declared as
data members of each of the three remotely
cooperating RT objects, TMOI, TMO2, and
TMO3, during the design time. The compiler and
the object execution engines running the tree RT
objects must then together facilitate the two
channels and guarantee timely transmission of
message over those channels. Once TMOI1 sends
a message over LMCI, ten the message will be
delivered to the ODS of each of the three RT
objects. Later during their execution certain
methods in TMO2 and TMO3 can pick up the
messages that came over LMCI into the ODS’s
of their host objects. In many applications, this
interaction mode leads to better efficiency than
the interaction mode based on remote method
invocations does.

4.4 Deadline specification and service
guarantee

As mentioned in the overview of the TMO
scheme, the designer of each RT object can
provide a guarantee of the timely service
capabilities of the object by indicating the
execution time-window for every output produced
by each service method in the specification of the
service method advertised to the designers of
potential client objects. Actually the execution

time-window associated with every output form

www.dbpia.co.kr

=1i/Distributed Real Time Simulation Programming with Time and Message Object Oriented in Computer Network Systems

every TT method is also a part of the guarantee.

An output action of a service method ma be one

of the following

(1) An updating of a portion of the ODS;

2) Sending a message
to either another RT object (which may or
may not be the client) or a device shared
by multiple objects;

(3) Placing a reservation into the reservation
queue for a certain TT method that will in
turn take its own output actions.

The specification of each service method which
is provided to the designers of potential client RT
objects, must contain at least the following:

(1) An input specification that consists of (la)
the types of input parameters that the
server object can accept and (1b) the
maximum request acceptance rate, i.e., the
maximum rate at which the server object
can receive service requests form client
objects;

(2) An output specification that indicates the
maximum delay (not the exact output time)
and the nature of the output value for
every output produced by the service
method.

If service requests form client object arrive at a
server object at a rate exceeding the maximum
acceptance rate indicated in the input specification
for the server object, then the server may return
exception signals to the client objects. The system
designer who checks an interconnection of RT
objects can prevent such "overflow”
occurrences through a careful analysis. The
designer should ensure that the aggregate
arrival rate of service request at each server
object does not exceed the maximum
acceptance rate during any period of system
operation. In order to satisfy greater service
demands presented by the client objects, the
system designer can increase the number of
server objects or use more powerful
execution engines in running server objects.
Before determining the maximum delay

Copyright (C) 2003 NuriMedia Co., Ltd.

specification, the server object designer must
consider the following.

(1) The worst-case delay form the arrival of a
Service request form a client object to the
initiation of the corresponding service
method by the server object;

(2) The worst-case execution time for the
service method from its initiation to each of
its output actions.

On the other hand, a client RT object imposes

a deadline on the cooperating distributed object
execution engines for producing the intended
computational effects including the execution of
the called service method and the arrival of the
return results at the client object If this deadline
is violated, the execution engine for the client
object invokes an appropriate exception handling
function.

The specifications of the TT methods which
may be executed on requests from the service
method must also be provided to the designers of
the client objects which may call the service
method. The specification of such a TT method
must contain at least the time triggering
specification and the output specification. There is
no input specification. The output specification
indicates, for every output expected from the
execution of the TT method, the exact time at or
by which it will be produced and the nature of
every value carried in the output action.

V. Conclusion

Deadline handling is a fundamental part of
real-time computing. This paper has proposed a
general broadly framework for
systematic deadline handling in RT distributed

applicable

objects. A prototype implementation of the basic
middleware support for the proposed deadline
handling scheme has been completed recently.
However, the cases where advanced RT fault
tolerance techniques such as those for active
replication of TMO method executions are used,
have not yet been dealt with and remain a
subject for future study. Systematic deadline

163

www.dbpia.co.kr

a5 288 =f4 '04-1 Vol.29 No.lC

handling is an area where much more

experimental research is needed.
REFERENCES

[1] H. Kopetz and K. H. Kim, "Temporal
uncertainties in interactions among real-time
objects", Proc. IEEE CS 9th Symp. On
Reliable Distributed
165-174,0ct. 1990.

[2] J. C. Laprie, "Dependability: A Unifying

Reliable, Safe, secure

Systems, pp-

Concept for
Computing", in Information Processing, ed. J.
van Leeuwen, pp. 585-593,1992

[3] C. W. Mercer and H. Tokuda, "The ARTS
real-time object model", Proc. IEEE CS Ilih
Real-Time Systems Symp., pp. 2-10, 1990

[4] K. H. Kim, "Real time Object-Oriented
Distributed Software Engineering and the
TMO scheme", Intl Jour. of Software
FEngineering & Knowledge Engineering, Vol.
No.2, pp.251-276, April 1999

[5] H. Kopetz and K. H. Kim, "Temporal
uncertainties in interactions among real-time
objects", Proc. I[EEE CS 9th Symp. On
Reliable Distributed
165-174,0ct. 1990

[6] KHKim and Liu, J. "Deadline Handling in
Real-time Distributed Objects", Proc. ISORC
2000, Newport Beach, CA, pp.7-15, March
2000

[71 K. H. Kim., "APIs Enabling High-Level
Real-Time Distributed Object Programming",
to appear in IEEE Computer, June 2000

[8] GJK, S.D.Ra and C.S.Bae, "Time Service
Guarantee in Real-Time Distributed Object
Oriented Programming of T™O",
Proc.ICIM'01, pp.215-219, Nov.2001

[9] C.lJeong and S.D.Ra, "High Level Object
Oriented Real-Time Simulation Programming

Systems, pp.

and Time-triggered Message-triggered
Object(TMO) Scheme", The KIMICS, Journal,
VOL.6, No.6, Oct 2002

[10] H.CKim and S.D.Ra, "Deadline Handling in

Real-Time Distributed Object Oriented

Copyright (C) 2003 NuriMedia Co., Ltd.

Programming of TMO", The KIMICS,
Journal, VOL.6, No.6, Oct 2002

[11] S.H.Song and S.D.Ra, " High Level Object
Oriented Real-Time Simulation Programming
and TMO Scheme", The KIPS Transactions :
PartA, Journal, VOL.10-A,No3, August 2003

Sang-dong Ra

Was born in Naju, South Korea,
on February 9, 1945. He
received the B.E degree in
electrical engineering from the
University of Chosun in 1968,
the M.E degree in electrical
engineering from the University
of Gunkook in 1980, and the Ph. D. degree in
electriacl engineering from the University of
Wookwang in 1995. He joined the Department of
Computer Engineering, Chosun university, in 1983

and became an Assistant Professor, A associate
Professor in 1985 and 1990, respectively. Since
1994, he has been a Professor in the Division of
Computer Engineering at Chosun University.
Currently, he is a Chairman of Department of
Computer Engineering at Chosun university.
During 1995-1996, 2000-2001, he was a Visiting
Scientist in the Department of Electrical and
Computer Engineering at the University of
California, Irvine. He is a member of System
H/W Subcommittee, Expert Committee, Industrial
Technology Development, Ministry of Trade and
Industry. His current research interests lie in the
areas of adaptive signal processing, information
theory, data communication, spread spectrum
systems and various kinds of communication
systems. He is member of ISS of Korea, ICS of
Korea, AS of Korea and ITE Korea. He is also a
former member of the IEEE communication

Society Board of Governors

www.dbpia.co.kr

=/ Distributed Real Time Simulation Programming with Time and Message Object Oriented in Computer Network Systems

Ha-Sun Na

Received the B.S. degree from
Hankook Aviation Unversity in
1998, and the M.S. degree in
| electrical and computer
engineering from the University
of Colorado at Boulder in 2003.
He participated in the

Reconfigurable Aperture project supported by the
Camp mode researcher center of the Univ. of
Colorado and worked on a RF-MEMS switching
device and a slot antenna in his graduate study.
His interest area of research are RF
communication. Bioelectromagnetics and real-time

communication

Moon-Hwan Kim

Was born in Jeju, south
Korea, on January 09, 1961.
He received the B.E degree
in computer engineering from

Korea National Open
University in 1988, the M.E
degree in computer

engineering from the University of Chosun
in 1991. He is currently completing the Ph.
D. degree in computer engineering at
University of Chosun, since 2001. He is
R&D Center team manager KRTnet
corporation in 2004. His research interests lie
in the area of digital signal processing,
switching network operation, real-time
communication, ATM network, multimedia
communication and various kinds of
communication systems. He is a member of
ISS of Korea, ICS of Korea, ITE of Korea
and IMICS of Korea.

Copyright (C) 2003 NuriMedia Co., Ltd. i

www.dbpia.co.kr

	Distributed Real Time Simulation Programming with Time and Message Object Oriented in Computer Network Systems
	Ⅰ. INTRODUCTION
	Ⅱ. General frame work for systematic deadline handling
	Ⅲ. An overview of the TMO scheme
	Ⅳ. Interaction among RT objects and RT message communicati
	Ⅴ. Conclusion
	REFERENCES

