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Ⅰ. Introduction

  Millimeter waves are being used for wide 

band communication and other special purpos

es. However, it is necessary to develop a the

oretical and experimental understanding of ele

ctromagnetic wave propagation at millimeter 

wavelengths through the atmosphere in order 

to assess the performance of millimeter wave 

systems. A general theory of beam wave pro

pagation through an atmosphere was presente

d in [1]. This theory accounts for the finite a

perture size of the source and describes the p

ropagation of five different wave field configu

rations through an atmosphere taken to have 

mean and fluctuating dispersive and absorbin

g components. In [2] a general model of bea

m wave propagation was extended and relate

d to common experimental quantities capable 

of being measured via a parabolic reflector a

ntenna. These experimentally measurable qua

ntities i.e., intensity covariance angle of arriv

al and the mutual coherence function are ver

y important because atmospheric effects on t

he propagation of electromagnetic waves are 

usually described in terms of these quantities.  

  Of particular interest here is the mutual co

herence function defined as the cross-correlati

on function of the complex fields in a directio

n transverse to the direction of propagation. 

Assuming that the fluctuations of electric per

mittivity are small and following the Rytov 

method
[3], the MCF, Γ  is given by
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where 0E  and D  are an unperturbed field co
mponent and a wave structure function respe

ctively. Here r  is the position vector and E  
represents the electric field. From Eq.(1), we 

see that the MCF describes the loss of coher

ence of an initially coherent wave propagatin

g in a turbulent medium. As a result, the M

CF is important for a number of practical ap

plications. It determines the S/N ratio of an o

ptical heterodyne detector, the limiting resolut

ion obtainable along an atmospheric path and 

the mean irradiance distribution from an initia

lly coherent wave emanating from a finite ap

erture.   
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Ⅱ. Quasi-Optical method (QOM)  

  The MCF is related to fluctuating inhomog

enities in the index of refraction of the propa

gation medium, so meteorological information 

is an important factor in assessing all-weathe

r performance of millimeter wavelength syste

ms. The transverse coherence length (defined 

as the transverse separation at which the MC

F is reduced by 
1−e  ) can be significantly re

duced by fog, smoke, etc. If we define 0ρ  as 
the transverse separation at which the atmos

pheric MCF is reduced by 
1−e , the minimum 

resolvable length at distance Z from an obser

ver is well known to be )/( 0ρkZ . Thus, a de

crease of coherence length means a decrease 

in the resolution and an increase of beam wa

ve spreading. The QOM can be used here to 

get the MCF from the instantaneous focal pla

ne irradiance distribution, that is, the spatial 

Fourier transform of the product of the electr

omagnetic fields at the aperture plane. 

  Under certain assumptions, the electric field 

in the focal plane of a parabolic reflector ante

nna can be represented as the Fourier transfo

rm of fields in the aperture plane. The relatio

nship is given by

rdfrqikrWrE

ikLfikqE

aS
∫∫ ⋅−×

=

2]/)(exp[)()(

)exp()2/()( π

  (2)

where

q  : a position vector in the focal plane
r  : a position vector in the aperture plane
k  : the  wave number
λ  : the wave length
f : the focal plane length of the parabolic refl
ector antenna

L  : a constant phase factor

aS : the area of the aperture plane

)(rW : the aperture function whose value is o

ne for 2/dr ≤  and zero otherwise where d i

s the diameter of the reflector at its aperture. 

  The assumptions under which Equation (2) 

holds are as follows.

a. the diameter and radius of curvature of the 

antenna and incident wave front must all be 

much larger than the wavelength of the incid

ent 

b. 2/fq λ<

c. 4/1>>F  where F is the F number defined 

by  f/aperture diameter

Therefore, the intensity I(q) at a point q on t

he focal plane is given by
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The electric field E is, however, a random fu

nction due to the statistical nature of the atm

osphere through which it propagated. Thus o

nly the ensemble averaged intensity can be c

onsidered. Ensemble averaged equation of (3) 

yields
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where >=<Γ )()(),( '*' rErErr  is the mutual c

oherence function of the electric field at the a

perture plane.  It is the mutual coherence fun

ction that describes the effects of the fluctuat

ing electrical parameters of the atmosphere o

n the propagating electromagnetic wave. Thu

s, if one can solve the integral equation  (4) 

for Γ , the MCF can be obtained from intensi
ty data on the focal plane. This is the essenc

e of the Quasi-optical method[2].   

  To solve Eq.(4) for Γ , the inverse Fourier 
transform will be taken with respect to the q 
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coordinate. After some manipulations, The opt

ical transfer function of the total system (of t

he atmosphere and the antenna), )(ρTH  is gi

ven by  

rdrWrWrrHT
2* )()(),()( ρρρ −−Γ= ∫       (5)

where 
'rr −=ρ . If the statistical inhomogeni

ty is negligible, Eq.(5) decouples and becomes 

)()(
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           (6)

where )(ρAH  is the antenna transfer function 

which simply represents the area of overlap of 

two circles of diameter d, one having a center 

at the origin of the r  coordinate system and t

he other having its origin at ρ  in the same s
ystem. Thus the r integration yields the area 

of overlap between the two circles given by 

]))/(1)(/()/([cos
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while the value of )(ρAH  is 0 for d>ρ .  

Ⅲ. Signal analysis on the focal plane 

  It remains to determine )(ρTH   given by   

qdfqikqIHT ∫ ⋅><= 2)/exp()()( ρρ        (8)

from measurements of <I(q)> in the focal pla

ne. <I(q)> can be obtained by placing a circu

lar iris (to conform to the azimuth symmetry 

of the intensity distribution) on the focal plan

e and measuring the rate of increase of flux 

as the iris is opened or closed. Quantitatively, 

the flux F(R) transmitted through an iris of r

adius R is described by

∫
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To be able to write the average intensity <I

(q)> in terms of the experimentally measured 

flux, Eq.(9) can be differentiated in the radial 

coordinate, i.e.,

><=
∂
∂ )(2)(1 RIRF
RR

π
                  (10)

Thus, the radial derivative of the flux at R y

ields the intensity there. However, the need t

o take the derivative of the flux (a rather dif

ficult task to do experimentally) can be circu

mvented by the following considerations.

  Taking into account the circular symmetry 

of the intensity distribution <I(q)>, Eq.(8) be

comes

qdqfqkJqI

qdqdfqikqIHT
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which is the Fourier-Bessel transform of <I

(q)>
[4]. Here, nJ  represents the Bessel functio

n of the first kind of order n. Equation (11) c

an be rewritten in terms of the flux )(RF  tr

ansmitted through an iris of radius R which i

s given by  

dqfqkdqJqdFHT )/(/)()(
0 0 ρρ ∫
∞

=
        (12)

Integrating by parts and using the recurrence 

relation for Bessel functions, )(ρTH  can be r

epresented by

dqfqkJqFfk

qFfqkJHT
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The first term in Eq.(13) vanish since 
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)/(0 fqkJ ρ  goes to zero as q goes to infinity 

and 0)0( =F  by definition. However, the actu

al interval of integration is not from zero to i

nfinity but from zero to the maximum radius 

of the focal plane scanner, i.e., maxq . Thus, th

e first term of Equation (13) cannot be ignor

ed and Eq.(13) becomes 

dqfkqJqFfk

qFfqkJH
q

T

)/()(/

)()/()(
max

0 1

maxmax0

ρρ

ρρ

∫+

≈

         (14)

Even though the definition of Fourier transfor

m formally requires the intensity <I(q)> to b

e considered in the interval [0, ∞ ] on the foc
al plane, the above procedures are also valid 

for the actual case because most of the recei

ved power is within the area bounded by the 

maximum radius, maxq . Thus using the experi

mentally determined flux, one can find )(ρTH  

through the use of Equation (14). 

Ⅳ. MCF from simulated flux data

  Since the flux or intensity cannot be know

n without actual measurements, the MCF will 

be computed from simulated flux data. For si

mulation purposes, the intensity function may 

be represented by   

                                           

)exp()( 22qaAqI −=                       (15)

where the constants, A and a, are determined 

based on the conditions that the intensity mu

st decrease by 
3−e  at the maximum focal pla

ne point, maxq , and the total detected power i

n the focal plane is one milliwatt. Therefore, 

the flux function for the simulation is given 

by 

))exp(1()(2)( 22

0 2 ra
a
AqdqqIrF

r
−−=><= ∫

ππ
 (16)

where 
17.78 −= ma  and 

2/97.1 mwattA =  for

mq 2
max 102.2 −×=  satisfying the previously me

ntioned conditions for simulation. Instead of u

sing a Riemann sum, the approximated total t

ransfer function represented by Eq.(14) was c

omputed numerically using the Gauss-Legend

re Quadrature formula[4] for the improved inte

gration accuracy. The results are shown in F

ig. 1. Figure 2 shows the MCF, Γ  which can 
be simply obtained from Eq.(6). From the fig

ures, it can be seen that the coherence length 

is very small because of a widely spreaded i

ntensity. This coherence length depends on th

e shape of intensity distribution. Here, anothe

r concern is the accuracy of the approximate

d results, )(ρTH . The results were tested for 

a case where an analytic solution is available. 

In the case of Gaussian beam waves (the ass

umed function for the simulation), an analytic 

solution for )(ρTH  can be obtained by Fourie

r-Bessel transformation method[5]. Referring t

o the original transfer function in Eq.(11), the 

exact solution of )(ρTH  becomes
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This exact solution and the approximated one 

were plotted in Fig.3. The approximated resul

ts shown in Fig.3 is the same plot given in 

Fig.1. As it can be expected, errors are not a

voidable because of the upper range approxim

ation, maxq instead of infinity and some numeri

cal integration errors. However, as seen from 

Fig. 3, the results show that the approximatio

n method is good enough to be applied in pra

ctice. 
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Fig.1 the computed total transfer function,    

     )(ρTH

Fig. 2 The obtained mutual coherence function,  

      )(ρΓ  

Fig. 3 the exact solution and approximation of  

      )(ρTH

Ⅴ. Conclusion

  The MCF is a very important factor in ass

essing the all-weather performance of millime

ter wave systems. In this paper, a practical 

method is derived and suggested to obtain M

CF more efficiently since the measurement of 

an average intensity is a rather difficult task 

to do experimentally. The suggested method i

s very convenient since the flux measurement 

can be done easily using a circular iris.  Als

o, it is shown that errors of this approximati

on method can be considered to be negligible 

practically. 
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