DEri=

== 04-29-4A-6 FLEAIS}3=522) "044 Val29 NodA

An Evolution of Software Reliability in a Large Scale Switching
System: using the software

Jae Ki Lee Regular Member, Sang Sik Nam, Chang Bong Kim* A Lifelong Members

[y

Summary

In this paper, an evolution of software reliability engineering in a large-scale software project is summarized. The
considered software consists of many components, called functional blocks in software of switching system. These
functional blocks are served as the unit of coding and test, and the software is continuously updated by adding new
functional blocks. We are mainly concerned with the analysis of the effects of these software components in software
reliability and reliability evolution.

We analyze the static characteristics of the software related to software reliability using collected failure data during
system test. We also discussed a pattern which represents a local and global growth of the software reliability as version
evolves. To find the pattern of system sofiware, we apply the S-shaped model to a collection of failure data sets of each
evolutionary version and the Goel-Okumoto(G-O) model to a grouped overall failure data set. We expect this pattern
analysis will be helpful to plan and manage necessary human/resources for a new similar software project which is
developed under the same developing circumstances by estimating the total software failures with respect to its size and
time.

Key words: Failure intensity, fault density, failure, saftware reliability, system test, software functional block
(SB), change request (CR).
1. Introduction switching system, released at 1995, is now
successfully in operation in Korea.

A large-scale software project is generally The software has been designed by using

defined in terms of the amount of required functional components, which are called
functional blocks. A functional block not only

provides the behaviorrequired by its specifica-

human resources and duration, Software of a
switching system is called a large-scale, for

required person power is over 100 and duration tion, but also serves as the unit that tries to

is also over one year. In [1], L. Bemstein identify possible software faults in the system

reported the difficulties of a large-scale project testing. The software is continued to be

management and hesuggested some management developed by adding new functions in several

principles emphasizing the deployment of people
working on the project. In general, management
of software projects isimproved through a
review of the past experiences. In this paper, we
summarize experience obtained from the studies
of software reliability applied to a large-scale
software project of the switching system. The

categories.

There is a recent study which deals with the
general description for the evolution of software
reliability for the telecommunications system
[2]. Motivated by the studies about management
and evolution of software reliability, we analyze
the effects of these functional blocks to software

* g sk A7) 7 FE) Z3H- (skpark @ hanyang.ac kr)
= F 0 030478-1103, A4UA} 2003 119 39

Copyright (C) 2003 NuriMedia Co., Ltd.

399

www.dbpia.co.kr

PFEAI S =Fx] 044 Vol.29 NodA

reliability and the reliability evolution.

To investigate the structural effect to software
reliability, we analyze the static characteristics
of the software related to software reliability
using failure data collected during system test.

We also analyze the pattern which represents
a local and global behavior of a software
reliability growth. With this pattern, we can
easily get practical information to determine the
time of adding new functions by keeping the
software reliability. Here by the local behavior,
the reliability growth of each evolutionary
version and global behavior, we mean the
overall reliability growth of the sofiware.

In section 2, we give a description for the
software components of the switching system.
System test methods and failure management
based on the functional blocks are explained in
section 3. In section 4, we give statistics for
failures with respect to the functional blocks.
The evolution of reliability is analyzed in section
5.

2. Software Components and

Versions

Five years and 80 - 120 humans/year are
invested in developing this software. Depending
on the implemented features, we divide the
software into three official versions, referred to
as N3.3, N3.4, and N3.5. N3.3 (N3.4) is further
divided into N3.3a and N3.3b (N3.4a and N34.b)
depending on the implemented services.

The first official version, N3.3, includes all
the features of PSTN (Public Switched
Telephone Network) and basic features of ISDN
(Integrated Services Digital Network) with CCS
(Common Channel Signaling} No.7 facilities.
N3.4 includes all the features of ISDN. N3.5 is
the last version and is released to the field. The
size of this software is 1,330 in kilo-lines of

400

Copyright (C) 2003 NuriMedia Co., Ltd.

source codes (KLOC).

The switchingsystem is designed with a fully
distributed architecture. Depending on this
architecture, the software is designed by the
modular atomic components, referred to as
functional blocks. These functional blocks
constitute the units of development, and also
serve as the unit of identifying software faults in
the system test. In N3.5, the final 140 functional
blocks are developed. The size of each
functional blocks range is over 2 - 10 KLOC.

Many functional blocks interacting in a
sequential manner perform a user function.
Interactions among functional blocks are
accomplished by exchanging signals via a
high-speed inter-processor communication link.
Each functional block s
independently by a team consisting of two or

developed

three members.

We classify these functional blocks, following
the organization of development teams, into the
following categories:

System Kernel (SK),
Call Processing (CP),
Data Handling (DH),
Administration (Ad),
Operation and Maintenance (OM)

The kernel category includes the concurrent
real-time operating system (CROS) and real-
time relational data base management system
(RDBMS). The functions for services of
PSTN,ISDN, CCS No.7, and X.25/X.75 packet
are collected into the CP category.

Functions related to handling data of call
processing and system configuration are
collected into the DH category. Functions for
administration are collected into the Ad
category, and functions for operation and

www.dbpia.co.kr

= /An Evolution of Software Reliability in a Large Scale Switching System: using the software

maintenance are into the OM category. The
number of functional blocks, the size, and the
number of associated system functions per
category is given in Table 1 for the final version
N3.S.

Table 1: No, of Functional blocks, size and system functions

per category
Categories |No. of Block (Size (KLOC) | Functions
cp 45 390.7 270
DH 14 171.9 33
Ad 44 3153 290
OM 29 240.7 241
SK 8 217.5 -
Total 140 | 13361 834

3. System test and failure
management

A. System Test

Since user functions are accomplished by
many functional blocks, they can only be
completely validated by a system test. And so,
the period of a system test is relatively long.
System tests, lasting about three months, are
repeated by three times to each version. Thus,
we take nine months as the unit of analyzing
failure data of each version, and one month as
the unit of grouping the failure data.

In the beginning of test, focuses of test are put
to verify system’s functionality, but as version
evolves, focuses are moved tomeasure system's
qualities. A scenario based testing strategy is
used, because of the large size and the lack of
precise usage information. Test scenarios are
chosen within a framework which describes
user's usage situations as much as possible. But,
once some software failures are corrected, a
series of test cases related to the detected
software failure are conducted to verify related

Copyright (C) 2003 NuriMedia Co., Ltd.

functions.

During a system test, all failure data are
gathered for accessing and predicting the
software reliability. Since a unit of execution in
the software is a functional block, the location of
software failures can be easily identified in a
system test.

- Test procedure and activity

The main tests, executed at each development
phase of switching system developed in ETRI
are unit test, function test, integration test and
system test. During these tests, system errors
(hardware and software error) are collected and
analyzed by the CRMS(Software Change
Request Management System). The CRMS
(meaning of the defect tracking system)is test
tools for software reliability, providing the
progress and processing activities of the project
development schedule, as well as software test
data.

Each error is summarized with CR(Change
Request) sheet which was divided into the cause
and kind of errors by using CRMS.

The occurred errors during system test were
recorded and placed in one of the following
3-type of categories. We also could classify the
occurred errors as category 2, 3.

In case of emergency error, we considered as
serious affect service. These errors areprocessing
of high priority and corrected for the error.

® Category of error type
Type 1 logical error, interface(internal/
external) error, wrong data type, error in use of
resource, coding standard violation error, rule or

convention error, error in previous phase,
commentary error

401

www.dbpia.co.kr

FHEAIS}S] = EA] '04-4 Vol29 NodA

Type 2: call processing, operation,

maintenance, data base, operating system, others

Type 3: critical (emergency), high, medium,
low, others

B. Management of Failures and Correction
of Software Faults

All abnormal behaviors observed during the
period of a system test are recorded to a FMS
(Failure Management System) in an on-line
fashion. Failures reported by FMS are examined
by FMCC (Failure Management Control
Committee), held in a week basis, to distinguish
software failures. Members of FMCC consist of
persons of design teams, development teams,
packaging team, and test team. In FMCC, cause
analysis is performed to each failure at the
functional block level.

Results of cause analysis are announced to the
concerned developers to identify and correct
software faults. Corrections of software faults
are accomplished through three stages. To
correct a software fault, a developer submits a
change request to the SCMC (Software Change
Management Committee). On a reception of CR,
SCMC keeps track of the state of the proposed
CR.

Correctedsoftware is built into a temporal
package, and a regression test for this package is
performed to verify the corrections by repeating
tests depending on the tree offunctions. If the
correction is verified, the state of a proposed CR
is closed. But the verification fails, the status of
a CR remains a continued state, and the same
test procedures are repeated. SCMC keeps all
data of CRs during these periods and these data
are used to reliability analysis. All of the CRs
are controlled by CRMS (see to Fig. 1)

The CRMS contains 2,000 CR collected

402

Copyright (C) 2003 NuriMedia Co., Ltd.

during the 4-years. The software change requests
constitute the most important part of data with
system development process. The foilowing
figure illustrates some of the most commonly
used state transitions. However, many other state
transitions are also possible. For example, we
can move a problem from Propose to close or
re-solve a problem by moving it from test to
solve. Our organization can customize the states
and state transitions available on a class-by-class
basis. [9],[10] In these studies, Recently reported
papers of assessing the evidence from Change
Management Data, we founded [18-19]

! e Nok.—
SCRC Result ¢
A

: :
Protiem » PTOPOS Accapts Soive | okmi Tou okp| Close
!

‘ A

Issue»

- - Not Accept

CRMS Flow Diagram

SCRC : Software Change Review Committee

Fig. 1 Control flow chart of the CRMS

® Failure specify

Detection of failures during system test is
classified to cause analysis and semantic analysis
method. Occurred to failure, it's analysis of
location, cause and content. Also, the failure
location divided two methods. 1'st analysis are
category type 1, function, blocks for a location,
2'nd analysis is detailed to classify for a content
of failure.

® Details failure classification

Software structure, signal, control and
assignment, data generation, packaging or
environment of development

This classify idea is consider a question in all
it's aspects of software design and programming.

www.dbpia.co.kr

=1~ /An Evolution of Software Reliability in a Large Scale Switching System: using the software

Figure 2 plots a number of fault density in
software functional blocks (SBs) each version.
Two curves have similar shapes but the fault
expose ratio (N3.3 after) in software blocks is
smaller than N3.3 before. For this reason, we
discussed section 4-A. In other words, N3.4

version is stable than N3.3.

= 46 26
= 40 [
96 —=— bufom N9.4 I 20
30 —»— oftur N9.9

@
% of hsiatir N33}

% of 58 fom

- w ¥ = ~ = w© & wu
- - w wm w W

Foult dunaity
Fig. 2 Fault density distribution among the SBs

Figure 3 present that the statuses of propose
and closed the software change request per
month. The analysis of time evolution between
proposed and closed of CRs gives an insight into
the correction effort to solve the problems (or
system failures) and to trace of the efficiency of
failure analysis process like as front of mentions.
Among the 2,200 failure report, we have solved
only 2,000 failures (real data : 1680 CRs). The
remained failures are canceled not corrected.
These failures (about 300 failures) are
determined to be a duplicate of an existing
failure report or not a fault.

300
200
100

failure

— mn ;M M M~ — ;N mn -
— = N N N N W

months
Fig. 3 Number of proposed and closed software CR
In figure 3, the number of proposed and
closed failure increased to radicallyin 3, 11 and
33-month start of the system test. The cause of
added, we have trial to practical and commercial

test adaptation of field in service. So, the

purpose of detection failures and the fixed of
software bugs during the system test, we change
to test scenario with operational profile and add
to test effort compatible with real environment.

® Review of CR data

We review the CR data;conclude the
following two possible major reasons for it. One
is the existence of well-defined development
methodology, which makes the programmer's
skill to be independent of the implementation of
the product. Another is that the developer's
career over a certain degree hardly affects the
number of faults. Also, we showed the duration
of time for a solved software change request
(SCR) as fellows

Satistics on SCRs life duration

raticf %)

months

4. Statistics of Failure Data

In this section, we analyze the statistics of
software failures in order to investigate the
characteristics of the software from the software
reliability viewpoint. These statistics are used to
identify function blocks which are the most
faults prone, and to estimate the measures of the
software reliability. In addition to this analysis,
there is a study on attributes to the software
reliability [8].

In [8], we applied to the failure data collected
on during the system test using of the poission
regression model. The majority of purpose to
this model is promotion of the software quality.
In other words, the concept of the poission

403

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

FHLEASS]=-F2] ‘044 Vol.29 NodA

regression is introduced to explain the
dependency between software failure data and
several explanatory variables. For example,
dependence of software complexity as to failure
criticality, size of source line, etc. therefore, this
model is proper to our project in development of
switching system and software failure count
modeling.

A. Software failure intensities and priority

of test

To view the reliability evolution, we use
failure intensity, indicating the number of
grouped failures per unit time (one month).
Figure 4shows the relationship between all
failures and the versions of the software during
the period of system tests (the unit of x-axis is
month),

No. of Failures
N3.3 N3.4 N3.5

300,
!

200
100-

50§
100 .

Fig. 4 Failure distributions to versions

Software version N3.3 is initial software
package added to some of functions for our first
demonstration version (N3.2). This package was
attempted to commercial and field test. Also,
N3.4 is a full package included all functions in
our switching system. In this version, we
performed integration test and system tests
following the priority of test made reference to
table 2. Last version (N3.5) is release of field for
a in service. The priority of test is followingthe
table 2 with functional category and each

404

Copyright (C) 2003 NuriMedia Co., Ltd.

version.
Table 2: Priority of test
Versions Priority
N3.3a CP>DH> Ad>OM
N3.3b Ad>OM>CP>DH
N3.4a CP> Ad>O0OM
N3.4b Ad>CP>0OM

B. Failure distribution among categories

Table 3 shows the failure distribution among
the categories mentioned in section 2.

As expected, the distribution of failures
among categories depends on the variety of
functions of a category. The Ad and OM
categories, taking 42% of the software, contains
65% of failures.

Table 3: Software Failure Distribution to categories

Total

Version | CP | DH | Ad | OM | SK
(%)

N33 253 | 3.7 | 420 | 257 | 33 100

N3.4 244 | 40 | 422 | 26.1 | 33 100

N3.5 330 ;) 05 [428) 211 [2.6 100

In Table 3, N3.3 and N3.4 have the similar
distribution of failures to each functional
category. But in N3.5, the number of failures in
the CP category is relatively high compared with
that of N3.3 and N3.4. This phenomenon
explains that, in a field test, functions in the CP
category are more frequently used than other
categories.

www.dbpia.co.kr

=i /An Evolution of Software Reliability in a Large Scale Switching System: using the software

C. Faults reduction factor

By fault reduction factor, known as the ratio
of software faults and the number of modified
blocks, we can measure the functional co-
relations among functional blocks.

Table 4 is a statistical data indicating the
number of modified blocks to correct software
faults. The fault reduction factor estimated from
Table 5 is around 0.90. This value can be
comparable to fault reduction values of other
case studies in [2], [4].

The portion of software faults that are
corrected by modifying 1 - 3 blocksis 94%. This
shows that the most of blocks keeps a functional
independence. But, blocks, modified more than 4
times per one fault, have many interactions with
other blocks. These functional blocks having
many interactions are of fault-prone.

Table 4: Modified Number of Blocks and CRs

No. of Modified Blocks CRs | Ratio (%)
1 1401 78
2 201 11
3 89 5
>4 109 6

D. Fault density distribution among
categories

A common measure used to evaluate code
quality is a fault density, defined as the number
of software faults divided by size. In Table 5, we
show the fault density distribution among
categories. The average fault density is less than
2.0 FaultKLOC. Fault density will be used to
estimate the amount of faults in a new similar
project.

Copyright (C) 2003 NuriMedia Co., Ltd.

Table 5: Fault density distribution among categories

Category Fault density
CP 2.13 = 833/390K
DH 2.32=397/171K
Ad 1.24 =392/315K
oM 2.19=526/240K
SK 0.28=71/257K
Average 1.632=2219/1373K

E. Correction Time Distribution

The distribution of time required to correct
faults is useful in predicting software main-
tenance effort during the field operation. In
Table 6, we show the statistics of duration of
CRs.

Required time for a failure correction is highly
correlated with its contents of fault. The failures
due to design fault require longer correction
time, but do not occur frequently. Through
semantic analysis, we see that 65% of failures
are caused due to control and assignment error
within a block.

Table 6: Life duration of CRs

Month Numbers of CR Percent
1 826 65.7(%)
2 210 16.7(%)
3 81 6.44(%)
4 46 3.70(%)
5 28 2.23(%)
6 23 1.80(%)
7 13 1.03(%0)

8 12 0.96(%)
9 12 0.96(%)
10 3 0.24(%)
11 3 0.24(%)
405

www.dbpia.co.kr

FFEA8S] A 044 Vol29 NodA

5. Evolution of Software Reliability

The generalized form of software reliability
model can be obtained if the distribution of
failures is given.

Using the generalizedform, the software
reliability growth research using the first stage of
test occurred failures are to be stupid. (For
example, selection of model and analysis of
model used parameters, inclusion and deletion
variable from model) So, general form is
proposal to unity method of the research our
project. Others, it is an easy distinction of
software reliability growth models and compare
of models.

A. Selection of model

In [11], we have experiencedthat our software
reliability models fit G-O and S-Shaped model
using a general form of software reliability
growth models. As an application of generalized
form, we classify three mentioned models

according to the form of b(t) ana SN (t)),
Also, we present a case study applying the

generalized form. b(t) is the failure rate per

software fault at time t. and N(t) is the number

remaining faults.

B. Evolution of two models

We analyze the software reliability growth
models for the specified period from the
viewpoint of theory of differential equations. We
defined a generalized form of reliability models

as fellows:

2O = p(t) f(N(2)) M

In other words, software reliability model

406

Copyright (C) 2003 NuriMedia Co., Ltd.

shown that the reliability model represent
differential equation between delta N(?) and b(?).
Also, we show the well-known software
reliability growth models (such as NHPP
models) G-0O, S-Shaped model are special cases
of the generalized form. Detailed of two
generalized form of reliability model evolution is
reference to appendix.

From (1), we also, extend the generalized
form into an expended form being,

T2 =b(t;) f(N(2) @)

Y testeffort, 0< ¥ $1
- General form of software reliability

growth model

In general hypothesis, the transformation of
time ratio for remaining faults in software is a
multiple of N¢#) and b(?} until the time t. So, that
function (1), we have called software reliability
general model. In this function (1), b(t) is fault
detection ratio and F(N()) is extra function for
variable of N¢z). Once again, software faults are
detected and removed in software during the
system test.

Rewrite of Function (1),

L0 = -0 = b(e) f(N(2)) = b() f(N(0) - u(2)

() : cumulative Jault (or failure),
N(0) : remaining fault(before start of test)

time t, differential time ratio for the H(t)is

subordination between b(t) and N(0), H ().
N() = a, software reliability growth curve

H() decided to intermediary variable a and
b(y).

- Expended form of software reliability

www.dbpia.co.kr

= /An Evolution of Software Reliability in a Large Scale Switching System: using the software

growth model

Software fault detection ratio is variable to
found failures at system test. It described that
fault detection ratio is consider of time and
test-effort in system tests for fault detection. In
case of variable to b for some of
parameters{eg. consumed of test time and test
effort, resource, etc.), general form of software
reliability differential function shown as fellows

LD = b(t;y) f(N(1))

Function (2) is presented to parameter » and
we have called expended form of software
reliability growth model.

Fault detection ratio put in weibull

distribution,

b(t;y)==bp""y>0 (3

in front of section B, applying to solved
differential equation,

N(t.y)=ae™ @)

incaseof7=1, bit, 1) =-b,
Nt 1) is same N = ae-bt (meaning of
remaining faults in software for G-O model)

C. Goodness of fit judgment
The results of NHPP model fitness areshown
in Table 10. NHPP model mean function is

H(t)=B0*(1-¢e®")/1+ PSI *e 5"
(5)

PSI: error detection efficiency

In inflection S-shaped model, PSI is ability of
error detection by test team or tester for the test
program (eg. wusing tool, experience of

Copyright (C) 2003 NuriMedia Co., Ltd.

programming language, carrier, etc.) this model
is well defined in [12], [13], [14].

The most widely used method for selection of
best regression model is to examine iteratively
some potential independent variables. That is
referred to as a stepwise regression procedure.
The details of this procedure are excellently
discussed in [15], [16].

In Table 10, R-square is a general measure of
the variance in the data explained by the model.
It is a percentage between zero and 100.
Traditionally, the R2 statistic is used almost
exclusively empirical studies in software
engineering. R2 is defined a ratio of sum of

squares;

2 _ SR
R — sst,

SSR: regression sum of squares for the fitted
subset regression model with parameter
SST: the total sum squares

A modification of R2 statistic (adjR2) is the
adjusted coefficient of multiple determinations,
which does not attempt to correct for the
parameters in regression model. This adjusted
coefficient of multiple determinations,

ade2=1—(”—‘1 SSE_

n-p/ SST
SSE: error sum of squares for fitted subset
regression model with parameters
n: number of observation, p: use of

parameters in model

The larger R2 and adjR2 are explains the
variance of a dependent variable. Repeated, the
largest R2corresponding to an exponential
distribution of error count over time. This
provides strong confirmatory evidence for the
adequacy of NHPP model in describing error

407

www.dbpia.co.kr

FEEAI8H 8 =% '04-4 Vol.29 NodA

occurrence in software. Therefore our project is
suited to exponential model and provides a
plausible characterization of error count over
time. We applied to non-linear growth curve
model using goodness of fit test statistics.[17]

- Corrected actual R-square (Rc2)

2] SSE_
Rc =1 CS54

SSE = ﬁ (_f’, - y,)z,SSA = ZN ytz
t=1

t=1
N 2 N 2 N
cssa =Yy -Qy) =Y (&, - ¥
=1 t=1 t=1
(6)

Y: : actual value, Y+ : predicted value

SSA: sum of squares in actual value

Y : actual mean

In function (6), the coefficient of determinate
is differ to linear regression model of coefficient.

- Corrected actual adjusted R-square
(adjRc2)

.p 2 _ (a-DR -k
ad]Rc - n-k-1 (7)

k=p-l, n: number of observation,
p: use of parameters in mode (or predicted of

population parameter)

The result data in Table 10 was determined by
solving (8), (6), (7) using SAS (statistical

analysis system).

D. Analysis results of data

To get the pattern of software reliability
growth, we apply the software reliability growth
theory to the failure data of each version and to
the grouped overall failure data.

408

Copyright (C) 2003 NuriMedia Co., Ltd.

Since we are interested in the reliability
growth pattern related to evolution of versions,
assuming that the arrival of failures are
independent in each version, we consider two
non-homogeneous Poisson process (NHPP)
models, in particular, the S-shaped [5],[6],[7]
and Goel-Okumoto(G-O)model [3], [4]. In the
G-O model, the failure intensity decrease from
the initial time, but in the S-shaped model it
increase to some finite time then gradually
decrease. The S-shaped model is a model that
implies the assumption of the failure intensity
depends on the tester's experience.

Recall that the cumulative failure count u(t) in
the S-shaped model is given by

w,(t)=a(l-(1+bt)e™),(a,b>0)
®

a : expected number of failures, b : failure rate

and the cumulative failure count of G-O
model is

ﬂGo(t) =a(l- e””),(a,b >0) 9)

Here a is the expected number of failures that
will be eventually be detected and b is the failure
rate. Also, b is the failure occurrence rate per
fault. In the Table 7, we give the total number of
failures of each version. N3.3a and N3.3b
(N3.4a and N3.4b) are the two temporal versions
of N3.3 (N3.4).

Applying the maximum likelihood estimation
method to the failure data in Table 7, as shown
in the Fig. 4, we obtain the estimated values of
parameters, a and b for the S-shaped model as in
Table 8.

www.dbpia.co.kr

=35 JAn Evolution of Software Reliability in a Large Scale Switching System: using the software

Table 7: Failure data of N3.3 and N3.4

Month N3.3a N3.3b N3.4a N3.4b
1 83 69 23 11
2 287 129 21 16
3 177 117 81 30
4 193 31 24 2
5 120 40 22 0
6 67 34 12 1
7 75 35 2 0
8 46 20 1 2
9 24 5 0 0
Table 8: Estimation a, b in S-shaped model
Version No. a b
N3.3a 1118.14 0.552831
N3.3b 490.31 0.641667
N3.4a 188.59 0.697083
N3.4b 62.13 0.937313

In Fig. 5, we show the local behavior of the
failure intensity growths of each version. The
finite times that maximize the failure intensity

are varied within 1-2 months in our cases.

Fig. 5 Local evolution of reliability growth

No.

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

The total failure counts per version are shown
in Table 9.
of Failures

Faiure Intensity per Versions
250

200

Months

Table 9: Number of total failures of each version

N33a | N3.3b | N1.4a N3.5 | field

1072 482 186 62 20 4

Version N3.4b

Failures

To getthe global sofiware reliability growth
pattern, we apply the G-O model to the failure
data in Table 9. The maximum likelihood
estimation for a and b for G-O model is
calculated as a = 1842.02 and b = 0.101597.
With these values, we get the global failure
intensity function as

Heoo(£) =1842.02%0.101597¢719%7
(10)

Using (10), we predicted the failure intensity
to be 0.77452 during the next 9 monthsit is
comparable to the real value 0.44444. Also, the
cumulative failures of S-shaped model are
shown in Fig. 6. InFig. 6, the real data (pot line)
shows the contributions to the overall failure
count arising from software errors related to
development cycle (eg. During system test)

If we compare the local failure intensities of
each version with the global one, we have the
curve which shows the pattern of software
reliability evolution pattern as shown in Fig. 7.

409

B A 8E =] 04-4 Vol.29 NodA

tailure
1500 . =
prediction _/ﬁ;_?—.__

1250 | data " real data
1000 -

L
750 :

-
s00 |
;50 b

E1 10

Fig. 6 Cumulative failures of S-Shaped

model
Intensity
Intensity evoluticn
300 |
250 !
200

150
100
50

30 100 week

Bl |0.160962 9.8586713953 |0.15653150.0018738456 |0.1653534

R-Square = 0.970937 R.>= | SSE/CSE , R.%: coefficient of statistic measuring

for non-linear model, SSE : the variance of the full model, CSE : the variance

of the mean model

[N3.4]
) Asymptotic 95%
Paramete Estimate Asymptotic Confidence interval
r std. Error
Lower Upper
BO 5592257800 Lower Upper
B1 0.2340925 5.2404657926 |546.83394804 |571.61761201

R-Square = 0.976044 R =1 SSE/CSE, R%: coefficient of statistic measuring
for non-linear model, SSE : the variance of the full model, CSE : the variance
of the mean model0.245158540.223026320.0046798135

[N3.5]

- Months

27 45

9 18

36

Fig. 7 Evolution of failure intensity

Table 10: Estimation of reliability for NHPP
A) Regression NHPP for each version

Version & model Source df [Sum of squares(s.s) |mean squares(m.s) R’ adj R
R i 2 |5814022.6978
N33 cgression 2907011.3489
Residual 7 |26996.3022
(NHPP) 3856.6146 0.970937 | 0.970916
Corrected total 8 928885.5556
R i 2 1247685.5250
N3.4 cgresston 623842.7625
Residual 7 |3666.4750
{ NHPP) 523.7821 0.976044 | 0.975947
Corrected total 8 153048.000
R i 2 [203419.11053
N3.5 cgression 101709.55527
Residual 7 3018.88947
(NHPP) 431.26992 0.906452 | 0.902554
Corrected total 8 32270.8889

B) Model predictive quality (for each version)

[N3.3]
Para ‘ Asymptotif: 95%
. Asymptotic Confidence interval
mete| Estimate
std. Error
r Lower Upper

B0 |1460.502008 1437.1837676 1483.8142489
410

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

=+ /An Evolution of Software Reliability in a Large Scale Switching System: using the software

Asymptotic 95%
N Asymptotic Confidence interval
Parameter | Estimate
std. Ervor
Lower Upper
APPENDIX
BO 235.1020588 (65,0394739937 |220.82085745 [249.38326010 A. Goel-Okum OtO(G-O) m odel
Let, b(t) = -b (b : constant),
Bl 0.2144906 0.0111351381]0.18815992 0.24082118
The software reliability growth model for

= 2 _ B 2, . c m B .
R-Square 0.91)6452‘ R: =1 SSE/CSE,R" coefﬁclent'ofslansnc for non-linear speczﬁed perlod, we deﬁned general form as
model, SSE : the variance of the full model, CSE : the variance of the mean model

Jollowings differential equation (A-1)

6. Conclusion

dAN(t
We analyzed the several issues, related to the % =-bN(t) (A-1)
sofiware reliability, of the software designed by N(¥) : remaining faults at time ¢
the functional block components. We found that, b(1) : failure rate at time t
regardless of the structuring components of the
software, the estimated values related the Junction (4-1), expressed differential display,

software reliability, such as, fault density, failure _
rates, etc, are comparable to that of founded in aNy _ bdt
literature [2], [3], [4]. But, the evolution of the N

failure intensity, heavily depending on the test

(A-2)

strategy and the deployed humans, ~show and integrated calculus of the function (4-2),

different behavior that of reported in [2]. Taking
into considerations of our test methods, we aN (t) - JO' bds + ¢

applied two software reliability growth models (A-3)

to a collection of failure data sets and get a c . integral constant
pattern of evolution failure intensity which
showing the local and global software reliability rewriting the function (4-3) for N(1),
growth.

As versions evolve, the size and complexity N(t) = Ce™ \
of software will be increased and test methods
complicated, and so the detection of software At this, on the assumption that initial
failures will be more difficult. And so, more condition is
systematic resources management will be NO) =ac=a
needed. iy

The knowledge about the pattern of a local N(1)=ae ,
and global software reliability growth will be Then, we obtained following the result as
helpful to plan the developing process and to
manage allocations of resources to improve - -
quality of new similar software by estimatilfg the NQ)-N()=a-ae "= a(l-e b‘) = Hoo @
total software failures with respect to its size and

time.

4an

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

PFEAI LS| =R "04-4 Vol.29 NodA

B. S-Shaped model
S-shaped model is proposedof Yamada et al.
and fault detection ratio is not constant, it's time

Junction.

2
Let, b(r) = —l:)»_brt ,

MO~ FEN@D @

dt 1+b¢

rewrite differential form (B-1)

dN@) _ p?
o = "t (B-2)

Also, integrated calculus of the function (B-2),

1nN(t)=—J[:b b ds+c=—b£(l—ﬁ)ds+c

1+ bs

=-bt+In(1+dbt)+c

¢ : integral constant

so, N(t) = Ce ™" ™" = C(1+ bt)e™

Let, N(0) = C = a, using N(@) = a(1+ br)e™

we conformed as fellows

N@©) - N(®) = a(l- (1+ bt)e™) = u,(¢)

C. An analysis of reliability growth
intermediary variable: parameter b(t)

Let, Probability distribution function F(1) for
time t, probability of fault detection at (t, t+dt)

is

_ Pli<x<t+dt] _ F'(n)de
b(t)dt“ Plx>t} 1-F@) (C-1)

a2

Copyright (C) 2003 NuriMedia Co., Ltd.

at this, Fault detection hazard rate at time t,

=75 (o

1) b(1) in Goel-Okumoto model
the fault density function f{(x) is

—bx
f(x)=be (<= hypothesis, exponential
density)

b()=—t—"r=p

=(-e®)

using (C-2), confirmed

2) b(1) in S-Shaped model
Let, probability density function f(x) is

-5
fx)= b’xe x(<= hypothesis, gamma
density)

F(x)=(1-bxe™ —e™)

2

using (C-2), confirmed
— _bhe™ _ b
b(t) - bte_b‘e+e'b' = 1+bt

others, in case of weibull distribution b(1),

density function is

fO=bp" e

the distribution function F(t) is

F(ty=1-¢e""

(b(t)= S =b}'ty—1)

1-F (1)

it's same function, section 5-B-(3)

www.dbpia.co.kr

- /An Evolution of Software Reliability in a Large Scale Switching System: using the software

References

[1] L. Bernstein, "Software in the Large”, AT &
T Technical Journal, pp. 5-14, Jan/Feb. 1996.

[2] Kaaniche M., Kanoun K, “Reliability of a
Commercial Telecommunications
ISSRE96, pp. 207-211, 1996.

[3] Michael R. Lyu, “Handbook of Software
Reliability Engineering’’, McGraw-Hill, 1995.
{41 J. Musa, A. Lammino, and K. Okumoto,
"Software Reliability: Measurement, Prediction,

Application’’, McGraw-Hill, 1987.

[5] S. Yamada and S. Osaki, "Non-homogeneous
error detection rate Models for Software
Reliability growth’’, Stochastic Models in

120-143,

System”’,

Reliability Theory, PP
Springer-Verlag, Berlin, 1984.

[6] Yamada. S, et al, “Software Reliability growth
Model of two types of errors’’, R.A.LR.O.
Operations Research, Vol. 19, No. 1, pp.
87-104, Feb. 1985.

[7] Shigeru Yamada and Hiroshi Ohtera,
"Software Reliability: Theory and Practical
Application”, SE series, pp. 135-196, Soft
Research Center, Feb. 1990.

[81 S. Y. Lee, An Application of Poisson
Regression to a Switching Software failures’,
ISSATI8, 1998.

[9]1 JK. Lee, et al, "A study on hypothetical
switching software through of the analysis of
failure data”, KICS journal, 98-8 Vol.23, No.
8, pp.1915-1925, Aug. 1998.

[10] JK. Lee, et al, "An Examination of fault
Exposure rate of switching software of TDX
series from empirical failure data”, IEEK
Jjournal, Vol. 36 S, No. 3, pp. 297-305, Mar.
1999,

[11] IN. Yoo, "A generalized form of software
reliability growth models”, IEEK journal,
Vol. 35 C, No. 5, pp. 331-336, May. 1998.

[12] M. Ohba, “Inflection S-shaped software
reliability growth model”, in stochastic

Copyright (C) 2003 NuriMedia Co., Ltd.

models in Reliability Theory, S. Osaki and
Y. Hotoyama (eds), PP 144-162,
Spring-Verlag, Berlin, 1984.

[13] S. Yamada, ”"Software reliability estimation
technology Introduction of software reliability
growth model”, HBJ publishing integrated
libraries No. 42, pp.101-115, 1989.

[14] 8. Yamada, Hiroshi Ohtera, “Software
reliability: theory and practical application”,
SE series software research center, pp.
135-173, Feb. 1990.

[15] N. draper and H. smith, "Applied regression
analysis” 2nd edition, John Wiley and Sons,
New York, 1981.

[16] J. Neter, W. wasserman and H. kurner,
“Applied linear statistical models”, IRWIN,
Homewood, 1985.

[17] 1Y, HWNG, "“A study on the Analysis
procedures of non-linear growth curve
models”, journal of KSQM, Vol. 25 No. 1,
pp. 44-55, Mar. 1997.

[18] Stephen G. Eick, Todd L. Graves, Alan F.
Karr, J.s. Marron, Audris Mockus, "Does
Code Decay? Assessing the Evidence from
Change Management Data”, IEEE Transaction
on software engineering, vol. 27, No. 1, pp.
1-12, JAN. 2001.

[19] Todd L. Graves, Alan F. Karr, J.s. Marron,
and Harvey Siy, “Predicting fault incidence
using software change history”, IEEE
Transaction on software engineering, vol. 28,
No. 7, pp 653-661, July 2000.

o] Al 7|Jae Ki Lee) 239

1985.2. A-gatddista 22}
et &4

1989.5. itz djggd
At 24

2002.3. - i sk
A7 B33t
R

1983.3. - ¥ F=AAFAATYE AT

FHA Eop axEsdel Afx, Y 2 23,

azede] 4 ¢

M3

www.dbpia.co.kr

FZLEA 3] =FA] '04-4 Vol.29 NodA

& & A|(Sang Sik Kim) A5

1981. 2. Shelats Az}
T3 EAEERD

1983. 2. w=o&taw oished
ARFE S(FEAAD

1999. 2. wh=toishn oishe]
ARREE SQ4(F3D

1985. 3. ~ A F=ARE
2 A4 AYLATFAED

(54 Bop ATM Technology, Signal Integrity,

NGN
Z! & Z(Chang-Bong Kim) Z23]14
19831 wEdistw At
HED
1988'3: Florida Tech ©h3}
| At Ah
) 1992'd: Texas A&M o3 A
At (FERAD

1993~ A Tt AR
FAlFEE e
200043~ & A v| =317} 5 2}-28}3| (IEEE)
Senior Member
(FRAEh FEAY, BAF

414

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

	An Evolution of Software Reliability in a Large Scale Switching System: using the software
	Summary
	1. Introduction
	2. Software Components and Versions
	3. System test and failure management
	4. Statistics of Failure Data
	5. Evolutions of Software Reliability
	6. Conclusion
	References

