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Adaptive Blind MMSE Equalization for SIMO Channel

Kyung-seung Ahn*, Heung-ki Baik** Regular Members

ABSTRACT

Blind equalization of transmission channel is important in communication areas and signal processing applica-

tions because it does not need training sequences, nor does it require a priori channel information. In this paper,

an adaptive blind MMSE channel equalization technique based on second-order statistics is investigated. We

present an adaptive blind MMSE channel equalization using multichannel linear prediction error method for

estimating cross-correlation vector. They can be implemented as RLS or LMS algorithms to recursively update the

cross-correlation vector. Once cross-correlation vector is available, it can be used for MMSE channel equalization.

Unlike many known subspace methods, our proposed algorithms do not require channel order estimation.

Therefore, our algorithms are robust to channel order mismatch. Performance of our algorithms and comparisons

with existing algorithms are shown for real measured digital microwave channel.

I. Introduction

Multipath propagation appears to be a typical
limitation in mobile digital communication where
it leads to severe intersymbol interference (ISI).
The classical techniques to overcome this problem
use either periodically sent training sequences or
blind techniques exploiting higher order statistics
(HOS) [1]. Adaptive equalization using training
sequence wastes the bandwidth efficiency but in
blind equalization, no training is needed and the
equalizer is obtained only with the utilization of
the received signal. A well-known HOS-based
algorithm is constant modulus algorithm (CMA).
A main disadvantage of this algorithm is the
possibility ~of local convergence [2]. The
fractionally-spaced CMA (FS-CMA) was shown in
[3] to guarantee global convergence with finite
length equalizers. Since the seminal work by
Tong et al. the problem of estimating the channel
response of multiple FIR channel driven by an
unknown input symbol has interested many
researchers in the signal processing areas and
communication fields [4] —[8].

For the most part, algebraic and second-order

statistics (SOS) techniques have been proposed
that exploit the structural techniques (Hankel,
Toeplitz matrix, er al.) of the single-input multiple
-output (SIMO) channel or data matrices. The
information on channel parameters or transmitted
data is typically recovered through subspace
decomposition of the received data matrix
(deterministic method) or that of the received data
correlation matrix (stochastic method). Although
very appealing from the conceptual and signal
processing techniques point of view, the use of
the aforementioned techniques in real world
applications faces serious challenges. Subspace-
based techniques lay in the fact that they relay
on the existence of numerically well-defined
dimensions of the noise-free signal or noise
subspaces. Since these dimensions are obviously
closely related to the channel length, subspace-
based techniques are extremely sensitive to
channel order mismatch [6], [7].

The prediction error method (PEM) offers an
alternative to the class of techniques above. PEM,
which was first introduced by Slock er al. and
later refined by Meraim et al. exploited the i.i.d.
property of the transmitted symbols and applies a
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linear prediction error filter on the received data
[7], [8]. The PEM offers great practical
advantages over most other proposed techniques.
First, channel estimation using the PEM remains
consistent in the presence of the channel length
mismatch. This property guarantees the robustness
of the technique with respect to the difficult
channel length estimation problem. Another
significant advantage of the PEM is that it lends
itself easily to a low-cost adaptive implementation
such as adaptive lattice filters. But the delay
cannot be controlled with existing one-step linear
prediction method [8] —-[11]. These algorithms
calculate ZF or MMSE equalizers based on
channel identification.

In this paper, we propose adaptive blind
MMSE channel equalization algorithm that is less
sensitive to the equalizer order length. This paper
makes three results. First, we estimate the
multichannel ~ prediction-based  cross-correlation
vector estimation between the channel output
signal and the transmitted signal. Estimated
cross-correlation vector can then be wused to
calculate the MMSE blind equalizer. Second, we
develop an efficient algorithm to perform this
cross-correlation vector tracking. A simple iterative
algorithm can be used to find the cross-correlation
vector. Third, we derive an LMS and RLS type
adaptive algorithms for MMSE blind equalization.
Most notations are standard: vectors and matrices
are boldface small and capital letters, respectively;
the matrix transpose, the Hermitian, the Moore-
Penrose pseudoinverse are denoted by ( -)T, ( ‘)",
and (-)", respectively; I is the PXP identity
matrix; E[ -] is the statistical expectation.

This paper is organized as follows. In section
I, we present models for the channel and blind
MMSE equalizer, and we introduce the concepts
of signal vectors and matrices. In section [, we
discuss multicnannel linear prediction problem for
cross-correlation  vector  estimation.  Simulation
results and performance comparisons of our
proposed algorithms ~ with some  well-known
existing algorithms are presented in section IV.

We conclude our results in section V.
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s(n)

Fig. 1 Linear equalization for fractionally-spaced channel.

II. Problem Formulation

1. System Model
Let x(r) be the continuous-time signal at the

output of a noisy communication channel

©

x(t)= Y s(k)h(t—kT)+v(t)

ot (n
where s(k) denotes the transmitted symbol at time
kT, h(t) denotes the continuous-time channel
impulse response, and v(f) is additive noise. The
fractionally-spaced discrete-time model can be
obtained either by time oversampling or by the
sensor array at the receiver [4]. The oversampled
single-input  single-output (SISO) model results
SIMO model as in Fig. 1. The corresponding
SIMO model is described as follows

L-1
x,(n) =) b (k)s(n—k)+v,(n)
k=0
=a,(n)+v,(n), i=0,---,P—1 (2
where P is the number of subchannel, and L is

the maximum order of the P subchannel.
Let

x(n) = [xo(n), -, xp_ (W]
h(n) =[hy(n), -, hp_ (W)]
v(n) =[vo(n), -+, vp_ (m)]" (€)

We represent x;(n) in a vector form as

x(n) = :Z:;s(k)h(n —k)+v(n) s

Stacking N received vectors samples into an

(NP x1)-vector, we can write a matrix equation as
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Xy (n)=Hs(n)+v,(n) (5)

where H is a NPX(N+L) block Toeplitz matrix,
s(n) is (N+L)x1, xwn(n), and vn(n) are NP X1

VeCtors.

s(n) =[s(n),--,s(n—L-N+D]"
xy(m)=[x" (), x" (n-N+1)J

vy =V (), v (n=N+1)T (©)
and
h(©) .- h(L-1) - 0
H= = ". : :
0 -~ h(0) - h(L-1) N

We assume the following in this paper.
(Al) The input sequence s(n) is zero-mean and
white with variance ¢ 2.
(A2) The additive noise v(n) is stationary with

zero mean and white with variance o 2.

(A3) The sequences s(n) and v(n) are uncorrelated.

(A4) The matrix H has full rank, ie., the
subchannels hi(n) have no common zeros to
satisfy the Bezout equation.

Consider an FIR linear MMSE equalizer shown
in Fig. 1, where gi(n) for i=0, 1, -, P—1 is the
order N equalizer of the ith subchannel and the
symbol is estimated from

§(n—d)=g"xy(n) ®)

According to (5)—-(7), =xw(n) has nonzero
correlation with only s(n),---,s(n —L~N+1). There-
fore, decision delay d is usually in the interval
[0, N+L~-1]. For finite SIMO channels, MMSE
equalizer of the finite length can be found if
assumption (A4) holds and the equalizer length
N=L [8]. An MMSE equalizer minimize the

following cost function
Jnmse = Ell (n—d)-s(n-d) '] )

MMSE blind equalizer with delay d is given by

Ewwse = argmin £[] g"xy (m-s(n-d)|*]

(10)

The minimum MSE filter to estimate s(n—d) is
the solution to the Wiener-Hopf equation [12]

E[x, (m)x{ (n)lg = E[x, (n)s’ (n—d)] (11)

Using assumptions (Al) -(A3), we can write the

exact correlation matrix of xy(n) as

R = E[x, (n)xi’, (n)]= oerHH + sz] (12)
whereas the cross-correlation vector equals

R = E[x, (n)x} (n)]= o’HH" + o1 (13)

where H(d) denotes the (d+1)th block column of
the channel convolution matrix H [12]. Based on
assumption that s(n) has unit variance, the blind
MMSE equalizer with delay d is given by

g=R"H(d) (14)

II. Proposed Method

1. Multichannel Linear Prediction
Consider the noise-free case. For convenience,
we can rewrite (5) as

s,(n)
xy(n)=Hs(n)=[H, H, H;] s,(n)
s,(n) (15)

where H; is of dimension NP Xd, the NPx1
vector H, is the (d+1)th column of H, and the
last part of H is denoted by H; with dimension
NPX(N+P-d-1) [13].

An NP X1 multichannel linear prediction error
vector can be obtained as [13]

Xy ()

f(n)=[1 —P,(n)][x il

=Hgs, (n
} 1 I( ) (16)
where P, is an NP XMP matrix. xy(n) is defined
in (6), and xu(n —d) is defined as

x(n—-d)
Xy (n—d)=
x(n—d-M +1) a7
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The optimal Pi(n) is obtained by minimizing as
following cost function

J, =t Elf,(mf" (m)]] (18)

Letting the partial derivative of (18) with
respective to P; equals to zero as following

% = E[-x, (n)x,, (n—d)+Px,, (n—d)x}y (n—d)]
i
=0 (19
We get as

P, =[E[x, (n—d)x}; (n—d)]]" E|x, (n)x,, (n—d)] (20)

Consider another multichannel linear prediction
problem

£.(n)=[1 —P,(m)] X, (n) (H H,| s,(n)
,(n)=[1 =P, (n = s
’ T Xy (n—d-1) s, m ] @1

The proof is again provided in [13]. Compared
with (18), (19), and (20), we can know that the
optimal P, is obtained as following

P, =[E[XM (n—d-N)xjy (n—d —1)]]' 5
Elxy (mx, (n—d -1)] (22)

In order to consider H,, we can compute
f(n)=f£,(n)—f (n)=H,s,(n) 23)

The transmitted signal with delay d is written as

H

H
2 0 H, 0
W e e 24)

s(n—d)=

Substitute (8) and (24) back to (9), we get

Juwse =1-8"H, —Hg+g"Rg @5)
Then, minimizing Jumse yields

guws: = R'H, =R"H(d) (26)
From (23), we know that

Ef(mt" (m)] =0 H,H} =0H(d)H" (d) 27
JHH; =0, (27

Copyight (C) 2003 NuriMedia Co., Ltd.

Then, the rank of the matrix E[f(n)f” (n)] is one.
Therefore, H(d) is the singular vector corres-
ponding to the largest singular value of matrix
E[f(n)f” (n)]. Substituting this estimated cross-
correlation vector into (26), MMSE blind equalizer
is obtained. If the delay d equals channel length,
then we can obtain channel coefficient since Ha
is just the channel coefficient vector.
The block style algorithm for MMSE blind
equalizer estimation can be summarized.
1. Compute correlation and prediction matrices
(20) and (22).
2. Compute the multichannel prediction vectors
(16), (21) and (23).
3. Compute R and H(d).
4. Compute MMSE blind equalizer gmmse.

2. Adaptive Implementation

We propose the adaptive algorithms for
updating the multichannel linear prediction error
filter coefficients. Two multichannel linear predic-
tion problems are required in estimating the
MMSE blind equalizer. We are required to
compute the multichannel prediction matrices in
(20) and (22) and to estimate the multichannel
prediction errors in (16), (21), and (23). In order
to fast convergence, we can use the RLS
algorithm to wupdate the multichannel linear
prediction as following
« Compute multichannel linear prediction error

vector:

f,(n)=x,(n)-P,(n-1)x,, (n—d)
f,(n)=xy(n)=P,(n-x,, (n—d-1) (28)

» Compute Kalman gain:

A'Q,(n-x,, (n—d)
1+ A%} (n—d)Q,(n—=D)xy (n—d)
A'Q,(n—1xy (n—d -1)
I+ AX0 (n—d—1DQ,(n—Dxy (n—d 1) (29

K,(n)=

Kz(n) =

» Update inverse of the correlation matrix:

Q,(m) =A"'Q,(n-1)-A'K ()x} (n—d)Q,(n—1)
Q,(M =2"'Qy(n-1)= 'K, (n)x}h (n—d =1)Q,(n—1) (30)
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+ Update multichannel linear prediction coeffici-

ent matrix:

P (n)=P(n-1)+ fl(n)KlH (n)
P,(n)=P,(n—1)+f,(n)KZ (n) 3D

« Compute another prediction error vector:

£(n) =£,(n) £, (n) 32)

The term A (0<A <1) is intended to reduce the
effect of past values on the statistics when the
filter operates in nonstationary environment. It
affects the convergence speed and the tracking
accuracy of the algorithm [14]. From the
covariance matrix of f(n) in (27), its estimation of
adaptive manner is given by

F(n)=AF(n—1)+f(n)f" (n) (33)

To update the correlation estimates recursively,

we can use the sample estimator

R(n)= "Z_‘:A"“' Xy, (k)X (k) + x,, (n)x (n)
k=0

= AR(n—1)+x, (n)x} (n) (34)

Defining B(n) =R’(n) and using the matrix
inversion lemma (e.g., [14], p. 565) with (34), we

can write
B(n)=A"B(n-1)-2"'K(n)x} (n)B(n-1) (35)
and
- A"B(n—x, ()
+ A7 xy (n)B(n-1)x,(n) (36)

Notice that (35) and (36) do not require a matrix
inverse problem and thereby provide a recursive
method for computing B(n). From (26), we can
use the following equation to obtain the MMSE

equalizer estimation
g(n)=B(n)H(d) 37

The above multichannel linear prediction problems
can be computed by an LMS algorithm. The first

one can be updated by

fi(n)=x,(n)-P(n-1)x,, (n-d)
f,(n)=xy(n)-P,(n-1x,,(n-d-1) (38)

The second one is updated by

P(n)=P(n-1)+ ,u,fl(n)x‘:’, (n—d)
P,(n)=P,(n—1)+ £, (n)x}, (n—d —1) 39)

3. Cross-Correlation Vector Tracking
Algorithm

A simple iterative algorithm known as the
power method can be used to find the largest
eigenvector and its associated eigenvector [15],
[23]. Let F be a matrix with eigenvalues ordered
as A DA > 2A wp, with corresponding
eigenvectors ej,e;,---eyp. Let €(0) be a normalized
vector that is assumed to be not orthogonal to e;.
The vector e(0) can be written in terms of the

eigenvector as
e(0)=ae, +a,e, +--+ayey (40)

for some set of coefficient a;, where a;#0. We
define the power method recursion by

e(n+1)=—)

| Fe(n)|| 41)
Then
)= a,/11(e1 +:—:(%)e2 o +%"(%)e~,,)

| Fe(0) ||
a,ﬂ,l(e, + %}(%)Zez o fgf(ﬂ’ﬂ)zewj
e(2)=
| Fe) ||

e(n) = a'j‘(“ vl e s —(AT)IWJ 42)

[ Fe(n—D)||

Because of the ordering of the eigenvalues, as

n—>o0

e(n) > ae, (43)

which is the eigenvector of F corresponding to

Copyright (C) 2003 NuriMedia Co., Ltd. 757
www.dbpia.co.kr



EA8H3] =2 '02-8 Vol.27 No.8A

Table 1. RLS-based adaptive
proposed method.

algorithm  for  the

Table 2. LMS-based adaptive
proposed method.

algorithm  for  the

Initialize the algorithm at time 7=0, set

Q(0)=Q,(0)=5""1 MP X MP
P,(0)=P,(0)=0 NP X MP
F(0)=0 NP X NP
R(O)=5""1 NP X NP
e(0)=[1,0,---,0] NP X1
For n=1, 2, 3, -, do the following
-1,
K,(m) = — 2:';3‘, 3'_(';;3,’(‘: 5"1); ':)(n_ = MP X1
-1,
Rl l+[’x; (32;"-—1;())‘::"-—1;; ::-d—l) M)
f,(n)=xy(n) =P (n-Dx, (n-d) NP X1
f,(n)=xy(n)-Py(n=)xy, (n-d-1) NP x1
P,(n)=P,(n—)+§,mK/ (n) NP X MP
P,(n) =Py (n 1)+, (K7 (n) NP X MP
Q(m=A"Q,(n-1)-A"K,(mx} (n-d)Q,(n~1) MP x MP
Q,(m)=A"Q,(n—-1)- 'K, (m)xff (n—d -1)Q,(n-1) MP X MP
f(n)=f,(n)-1,(n) NP x1
F(n)=AF(n=1)+£(mt" (n) NP X NP
e(n)=Fe(n-1) NP x1
A(n) =e" (n)Fe(n) 1x1
H, = JA(n) -e(n) NP X1
R(n) = AR(n~1) +x,, (n)x (n) NP X NP
B(n) = A'B(n—1)-A"'K(n)x! (n)B(n-1) NP X NP
A'B(n-1x,(n
K(n) =1—+m);‘_i)x%l—) NP x1
g(n) = B(mH(d) NP X1

Initialize the algorithm at time n=0, set

P,(0)=P,(0)=0 NP X MP
F(0)=0 NP X NP
R(0)=6""1 NP X NP
€(0)=(1,0,---,0] NP x1
For n=1, 2, 3, -+, do the following
f,(n)=xy(n)- P (n)x, (n—d) NP x1
f,(n) = xy(n) =Py (n)x, (n—d -1) NP X1
P,(n) =P, (n—1)+ s (m)xy (n—d) NP X MP
P, (n) = Py (n=1)+ o, (m)x}y (n—d —1) NP X MP
f(n)=0,(n)—1f,(n) NP X1
F(n) = AF(n-1)+1(m)" (n) NP X NP
e(n)=Fe(n-1) NP x1
An) =e” (n)Fe(n) 1.%1
1, = JA(n) -e(n) NP X1
R(n) = AR(n—1)+x, (m)x}; (n) NP X NP
B(n)=A"B(n-1)- I 'K(n)x}; (n)B(n-1) NP X NP
Km:1+xj;;::);zx—f;:~(n) NE>
g(n)=B(mH(d) NP X1
decision delayed blind equalizer can be

determined by the following CM index [22]:

Jem = Z(Iggx,\,(n)l2 _]):

(46)

the largest eigenvalue. The eigenvalue itself is
found by a Rayleigh quotient,

H
e’ (n)Fe(n) A
lle(n) Il (44)

It should be noted that the MMSE equalizer is

designed for transmitted symbol recovery at
specific decision delay. Thus, different decision
delay can result in different performance. A
recursive form to get best decision delay is
discussed in [12] and [22]. To get best decision
delay choice, [12] proposes the minimizing MSE

is given by
JMMSE(d)zl_HH(d)R*H(d) (45)

If the transmitted symbols have constant modulus
(CM) property, which is practical case in digitally
modulated signal such as QAM or PSK, the best

Copyyight (C) 2003 NuriMedia Co., Ltd.

where g; is a d-delay blind equalizer. The blind
equalizer having the smallest Jumse or Jom value
will be considered as the best decision delayed
blind equalizer. In many practical channels, it has
been observed [1] that d=(N+L)/2
results and LMS-
based proposed
method are summarized in Table 1 and Table 2,

selecting
RLS-

algorithms  for the

in good performance.
adaptive

respectively. The computational complexity of the

RLS-based proposed algorithm is approximately

I art
12 Real part 02 imaginary p:
) ol |9
98 [ 01 I
| |
08t | |
| I
4 @ o ’
I By pal g oPPo,0f
02 o‘ I | 2
0 , 50003*‘”‘030 J
b
924 5 10 15 20 015 5 10 15 20

Fig. 2 Real and imaginary part of the shortened real
measured channel impulse response.
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9(MP)2 +1 l(NP)2 +4(MP)(NP). Moreover, the com-
putational complexity of the LMS-based proposed
algorithm is reduced to about 11(NP)2+4(MP)(NP).

IV. Simulation Results

In this section, we use computer simulations to
evaluate the performance of the proposed
algorithm. We compare the performance of the
proposed algorithm with some existing algorithms.
The SNR is defined to be at the input to the
equalizer as shown in Fig. 1.

SNR = E[§|aj(,,)‘l]/5{§|vj (,,H o

As a performance index, we estimate the residual
ISI over 50 independent Monte Carlo runs. The
residual ISI is defined as

2 ~max|qmf
ISI=-£

max|q(n)]’ (48)

where

P-1 L-1

= i =
g(n) ;;g,(/)h(" 7 49)

The source symbols are drawn from a 16-QAM
constellation with a uniform distribution. The noise
is drawn from white Gaussian distribution at a
varying SNR. The simulated channel is a
length-16 version of an empirically measured

MSE and CM curves
@ MSE l‘( i

H
H

/

i

Normaiized Vaiue
3

Decision Delay

Fig. 3 The best decision delay choice rule.

(7]2)-spaced (P=2) digital microwave radio channel
with 230 taps, which we truncated to obtain a
channel with L=8. The Microwave channel
chanl.mat is founded at http://spib.rice.edu
/spib/microwave.html. The shortened version is
derived by linear decimation of the FFT of the
full-length  (7)2)-spaced impulse response and
taking the IFFT of the decimated version (see
[16] for more details on this channel). The overall
channel impulse response is shown in Fig. 2.

SNR=20dB
08
06
g
E 04
g
=
02
0
025 2 - 6 8 10 12 14 16
Tap
SNR=30dB
08
06
@
g
=
02
0
5 2 4 6 8 10 12 14 16

Fig. 4 Magnitude of the estimated channel under
SNR =20dB and SNR=30dB at 50 trials,
the original channel (solid line), the
averaged  estimated+standard  deviation
(dotted line), and the mean value of 50
estimates (square symbol).

\ 1S curves, SNR=25dB

10” ~ —— RLS, A=0.995

0 500 1000 1500 2000
Samples

Fig. 5 Comparison of residual ISI for the
proposed algorithm, SNR =25dB.
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ISI curves

-------- SNR=15d8
=== SNR=200B
—— SNR=25d8

s
0 200 400 600 800 1000 1200 1400 1600
Samples

Fig. 6 ISI curves of the proposed RLS
algorithm for different SNR’s.

Residual IS| versus different equalizer order

=©~ SNR = 20dB
—8— SNR=25d8

Residual ISI

4 5 6 7 8 9 10 1 12
Equalizer order

Fig. 7. Residual 1SI curves versus the
different equalizer order, SNR =20dB
and SNR =25dB.

We consider the performance of the proposed
RLS and LMS algorithms for blind MMSE
equalizer. Let the equalizer order N=8, and let
the delay be d=7. In Fig. 3, we show the Jmmse
and Jcm versus decision delay 4 under SNR =
30dB. Fig. 4 shows 50 estimates of the
cross-correlation vector under SNR =20dB and
30dB, respectively. We have discussed earlier that
we can obtain channel coefficient vector if delay
equals to channel length. From this figure, we
can obtain the channel estimation from the

Unequalized, SNR=25dB After equalization, SNR=25dB

2 e e e A
] LA
L R

2 IEEER
-2 0 2 -1 0 1

Fig. 8 Scatter plots before and after equalization for the
proposed RLS algorithm, SNR=25dB.
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ISI curves, SNR = 25dB
10 s T == T

r
—— CMA
—— FEPF
—+— BPEF

o - Halford
10 R —s— OurLMS
—o— OurRLS

1SI
3

3
0 200 400 600 800 1000 1200 1400 1600
Samples

Fig. 9 ISI comparisons of existing algorithms
and the proposed algorithm, SNR =25dB.

cross-correlation vector with delay corresponding
to the channel length. The performance of the
proposed RLS and LMS algorithms are shown in
Fig. 5. It is found from the results that the
proposed RLS and LMS algorithms and achieve
sufficiently low ISI after 1000 samples. Fig. 6
shows the ISI curves of the proposed RLS
algorithm under SNR =15dB, 20dB, and 25dB.
Fig. 7 presents the performance of the proposed
RLS algorithm after 2000 samples for several
equalizer orders under SNR =20dB and 25dB.
From this figure, we can conclude that the exact
order estimation is not needed in the proposed
algorithm. Fig. 8 shows the received constellation
and the equalized constellation at SNR =25dB for
1000 samples. We compare the performance of
the proposed algorithm with some existing
algorithms: the CMA of [17], least-squares lattice
(LSL) one-step forward prediction of [9] (denotes
FPEF), LSL one-step backward prediction of [9]
(denotes BPEF), and RLS equalizer of [18]
(denote Halford). Let the all equalizer orders be
N=8 for fair comparison. Fig. 9 shows the ISI
curves for the proposed LMS and RLS algorithms
and existing algorithms at SNR=25dB. It is
shown that the proposed algorithms perform better
than the others.

V. Conclusion

This paper presents blind MMSE channel
equalization using multichannel prediction-based
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cross-correlation vector estimation. A block-type
algorithm is developed using the correlation
matrices of the received signal. Then, we have
developed the RLS and LMS type algorithm for
obtaining the multichannel linear prediction error.
Furthermore, we have used the iterative power
method for tracking the cross-correlation vector.
Our proposed algorithms do not require the exact
channel order estimation and are robust to channel
order mismatch in nature of linear prediction
characteristics. Moreover, cross-correlation vector
estimation algorithm can be used for partial or
complete channel estimation via delay control.
Simulation results show that the proposed
algorithms outperform many existing algorithms.
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