DEri=

=& 02-27-10A-5

=2 A18}3] =] °02-10 Vol.27 No.10A

Object Oriented Real Time Distributed Programming and
Time-triggered Message-triggered Object(TMO) Scheme

Gwang-Jun Kim*, Sang-Dong Ra*, Chul-Soo Bae** Regular Members

ABSTRACT

The object-oriented(OO) distributed real-time(RT) programming movement started in 1990’s and is growing

rapidly at this turn of the century. Distributed real-time simulation is a field in its infancy but it is bounded to

receive steadily growing recognition for its importance and wide applicability. The scheme is called the

distributed time-triggered simulation scheme which is conceptually simple and easy to use but widely applicable.

A new generation object oriented(OO) RT programming scheme is called the time-triggered message triggered

object(TMO) programming scheme and it is used to make specific illustrations of the issues. The TMO

structuring scheme is a general-style components structuring scheme and supports design of all types of

component including hard real time objects and non real time objects within one general structure.

I. Introduction

Object oriented real time distributed computing
is a rapidly growing branch of computer science
and engineering. Its growth is fueled by the
strong needs present in industry for the RT
programing methods and tools which will bring
about orders of magnitude improvement over the
traditional RT programing practiced with low-level
programing languages and styles.

RT simulator developments are under increasing
demands'"***. For example, continuing advances
in virtual reality application accompany increasing
demands for more powerful RT simulation
capabilities. Numerous other examples can also be
found in the RT computing control field. Not
only description but also simulation of application
environments is often performed as integral steps
of validating control computer system designs. RT
simulators of application environments can often
enable highly cost-effective testing of the control
computer systems implemented. Such testing can
be a lot cheaper than the testing performed in
actual application environments while being much
more effective than the testing based on non-RT

simulators of environments.
The new generation OO RT programing
scheme called the time-triggered message triggered

356 In the course of

object programing scheme
developing a RT system engineering methodology
based on this TMO programing scheme, a new
approach to RT simulation which is conceptually
simple and easy to use but widely applicable, has
also been established.

In the next section, the motivations for
pursuing the OO RT programing approach are
reviewed and then in section 3, a brief overview
is taken of the particular programing scheme. This
programing scheme called the time-triggered
object(TMO) programing

is used on several occasions in the

triggered
[1.2,3,6]

message
scheme
rest of this paper to make specific illustrations of
the issues and potentials of OO RT programing.

. High-level approach to
programming real-time distributed
systems

As a concrete example of a high-level OO RT
distributed programming approach that has been

* skl 7335E] 3-3HH(ban9628 @ hotmail.com, sdna@mail.chosun.ac.kr)

** yhEoidha 4 8541381 (baecs @mail. kwandong.ac.kr)
= F 0 020227-0509, A4zt 20029 59 9

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

=/ Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme

based on the philosophy discussed in the
preceding section, the time-triggered message-
triggered object(TMO) programming scheme is
briefly summarized in this section'>*>9,

The TMO scheme was established in early
1990’s with a concrete syntactic structure and
execution semantics for economical reliable design
and implementation of RT systems. The TMO
scheme is a general-style component structuring
scheme and supports design of all types of
components including distributable objects and
distributable non-RT objects within one general
structure.

Calling the TMO scheme a high-level
distributed programming scheme is justified by the
following characteristics of the scheme

(1)No manipulation of processes and threads :
Concurrency is specified in an abstract form at
the level of object methods. Since processes and
threads are transparent to TMO programmers,
the priorities assigned to them, if any, are not
visible, either.

(2)No manipulation of hardware-dependent
features in programming interactions among
objects : TMO programmers are not burdened
with any direct use of low-level network
protocols and any direct manipulation of physical
channels and physical node addresses/names.

(3) No specification of timing requirements in
(indirect) terms other than start-windows and
completion deadlines for program units (e.g.,
object methods) and time-windows for output
actions : TMOs are devised to contain only
high-level intuitive and yet precise expressions
of timing requirements. Priorities are attributes
often attached by the OS to low-level program
abstractions such as threads and they are not
natural expressions of timing requirements.
Therefore, no such indirect and inaccurate
styles of expressing timing requirements are
associated with objects and methods.

At the same time the TMO scheme is aimed
for enabling a great reduction of the designer’s
efforts in guaranteeing timely service capabilities
of distributed computing application systems. It
has been formulated from the beginning with the
objective of enabling design-time guaranteeing of
timely actions. The TMO incorporates several
rules for execution of its components that make
the analysis of the worst-case time behavior of
TMOs to be systematic and relatively easy while
not reducing the programming power in any way.

TMO is a natural and syntactically minor but

powerful extension of the

)16]'

semantically
conventional object(s

As depicted in Fig. 1 the basic TMO structure
consists of four parts :

ODS-sec = object-data-store section : list of
object-data-store segments(ODSS’s);

EAC-sec =
section : list of gate objects (to be discussed

environment access-capability
later) providing efficient call-paths to remote
object methods, logical communication channels,
and I/O device interfaces;

SpM-sec = spontaneous-method section : list of
spontaneous methods;

SvM-sec = service-method section.

Name of TMO ﬁ
.:....." Capabilities for accessing
S

other TMO's and network
environment ind . logical
multicast channels, and

1/0 devices

3
|8
&
i

Time-triggered (TT)
Spontaneous Methods
(SpMs)

"Absolute time
in"

/ Service Nggg;ed

o< | o
.

"Relative time
domain”

Fig. 1 Structure of the TMO

Major features are summarized below.
(a) Distributed computing component :

Copyright (C) 2003 NuriMedia Co., Ltd. gl
www.dbpia.co.kr

g EAI}3]| 2= 57] "02-10 Vol.27 No.10A

The TMO is a distributed computing
component and thus TMOs distributed over
multiple nodes may interact via remote method
calls. To maximize the concurrency in execution
of client methods in one node and server methods
in the same node of different nodes, client
methods are allowed to make non-blocking types

of service requests to server methods.

(b) Clear separation between two types of methods :

The TMO may contain two types of methods,
time-triggered (TT-) methods (also called the
spontaneous methods of SpMs), which are clearly
separated from the conventional service methods
(SvMs). The SpM executions are triggered upon
reaching of the RT clock at specific values
determined at the design time whereas the SvM
executions are triggered by service request
messages from clients. Moreover, actions to be
taken at real times which can be determined at
the design time can appear only in SpMs.

(¢) Basic concurrency constraint (BCC) :

This rule prevents potential conflicts between
SpMs and SvMs and reduces the designer’s
efforts in guaranteeing timely service capabilities
of TMOs. Basically, activation of an SvM
triggered by a message from an external client is
allowed only when potentially conflicting SpM
executions are not in place. An SvM is allowed
to execute only when and execution time-window
big enough for the SvM that does not overlap
with the execution time-window of any SpM that
accesses the same ODSSs to be accessed by the
SvM, opens up. However, the BCC does not
stand in the way of either concurrent SpM

executions of concurrent SYM executions.

(d) Guaranteed completion time and deadline :
The TMO incorporates deadlines in the most
general form. Basically, for output actions and
method completions of a TMO, the designer
guarantees and advertises execution time-windows

bounded by start time and completion times.

Triggering times for SpMs must be fully
specified as constants during the design time.
Those real-time constants appear in the first
clause of an SpM specification called the
autonomous activation condition (AAC) section.
An example of an AAC is

“for t = from 10am to 10:50am every 30min
start-during (t, t+5min) finish-by
t+10min”

which has the same effect as

“start-during (10am, 10:05am)
finish-by 10:10am”,
“start-during (10:30am, 10:35am)
finish-by 10:40am”

A provision is also made for making the AAC
section of an SpM contain only candidate trigger-
ing times, not actual triggering times, so that a
subset of the candidate triggering times indicated
in the AAC section may be dynamically chosen
for actual triggering. Such a dynamic selection
occurs when an SvM within the same TMO
object requests future executions of a specific
SpM. Each AAC specifying candidate triggering
times rather than actual triggering times has a

name.

If. Interaction among RT objects
and RT message communication

1. Non-blocking call

An underlying designs philosophy of the RT
OO distributed computing approaches is that every
RT DCS will be designedin the form of a
network of RT objects. RT objects interact via
calls by client objects for service methods in
server objects. The caller may be a TT method
or a service method in the clients. In order to
facilitate highly concurrent operations of client
and server objects, non-blocking (sometimes called
asynchronous) types of calls(i.e., service request)
in addition to the conventional blocking type of
calls service methods should be allowed. Therefore,
the TMO scheme supports the following two
basic types of calls to service methods in the

Gopyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

3=/ Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme

server TMO.

(1) Blocking call: After calling a service
method, the client waits until a result message
in returned from the service methods. The
syntactic structure may be in the form of

Obj-name.SvM-name(parameter-1,parameter-2,,
by deadline).

Since the client and the server object may be
resident in two different processing nodes, this
call is in general implemented in the form of a
remote procedure call. Even if there is no
result parameter in the service method, the
execution completion signal from the server
method does not arrive by the specified
deadline, then the execution engine for the
client object invokes an appropriate exception
handling function as it would when an
arithmetic overflow occurs.

(2) Non-blocking call: After calling a service
method, the client can proceed to follow-on
steps(i.e., statements or instructions) and then
wait for a result message from the service
method. The syntactic structure may be in the
form of

Obj-name.SvM-name(parameter-1,parameter-2,,
mode NWFR, timestamp TS);

------- statements------;
get-result Obj-name. SvM-name(TS) by
deadline;

The mode specification “NWFR” which is an
abbreviation of “No-Wait-For-Return” indicates
that this is a non-blocking call. When the client
calls the service method, the clients records a
time-stamp into a variable, say TS. The time-
stamp uniquely identifies this particular call for
the service method from this client. Therefore,
later when the client needs to ensure by execution
of the “get-result” statement the arrival of the
results returned form the earlier non-blocking call

for the service method, not only the service
method name but also the variable TS containing
the time-stamp associated with the subject call
must be indicated. When a client make multiple
non-blocking calls for service methods before
executing a “get-result” statement, the time-stamp
unambiguously indicate to the execution engine
which non-blocking call is referred to. If the
results have not been returned at the time of
executing the “get-result” statement, the client
waits until the execution engine recognizes the
arrival of the results. A non-blocking call thus
creates concurrency between a client method (TT
method or service method) and a service method
in a server object and the concurrency lasts until
the execution of the corresponding “get-result”
statement. In some situations, a client does not
need any result form a non-blocking call for a
service method. Such a client does not use a

“get-result” statement.

2. Client-transfer call

Even though its needs were initially recognized
in the context of the TMO scheme, it is of
fundamental nature and may be useful in almost
all types of RT systems, Basically, an SyM in a
TMO may pass a client request to another SvM
by using a client-transfer call. The latter SvM
may again pass the client request to another SvM.
This chaining sequence may repeat until the last
SvM in the chain returns the results to the client.
The main motivation behind such a client-transfer
call stamp from BCC which require an execution
of an SVM to be made only if a sufficiently
large time-window between executions of SpM'’s
potentially conflicting with the SvM opens up.
Hence, in certain situations a highly complicated
SvM may never be executed due to the lack of a
wide enough time-window. One way to get
around this problem is to divide the SvM into
multiple smaller SvM’s, SvMI1,, SvMx. A client
can then call each smaller SvM each time.
Calling each smaller SvM incurs the communi-
cation overhead of transmitting a request to the
smaller SvM and obtaining the results. Substantial

Copyright (C) 2003 NuriMedia Co., Ltd. 993
www.dbpia.co.kr

g EA18H5] 1= %] "02-10 Vol.27 No.10A

reduction of such communication overhead is the
motivation behind an arrangement in which the
client calls the first SYM and the latter passes the
“service contract” with the client on to another
SvM and so on until the last SYM of the chain
returns the results to the client.

As a part of executing this client-transfer call
for an SvM, the execution engine terminates the
caller SvM, places a request for execution of the
called SYM into the service request queue for the
called SvM, and establishes the return connection
from the called SvM to the client of the caller
SvM that has just been terminated. When the
“return” statement in the called SvM is executed,
the results are returned through the return
connection established. Since the external clients
which called the first SvM cannot predict form
which SvM it will receive returned results, it is
implemented to accept results without having to
know which SvM the results came form.

A client-transfer call may involve passing
parameters in an explicit manner as done in the
case of a call by an external client or passing
information through the shared data structures in
the ODS. The syntactic structure for such a
client-transfer call for an SvM may be in the

form of

ClientTransferCall(SvM_name, parameters)

SvM_name identifies the SvM being called.
The ID of the port or channel through which the
current client of the caller SvM is prepared to
receive return results is passed by the object
execution engine on to the execution support
record for the SvM being called. That is, a
proper return connection is established between
the SyM being called and the current client of
the caller SvM. The parameters may include the
parameters newly created by the caller SvM as
well as those created by predecessors in the
client-transfer chain.

There is no reason why this client-transfer call
cannot be extended to the case of calling an SvM
in another TMO. The syntactic structure for such

a client-transfer call for an external SvM is about
the same, i.e.,

ClientTransferCall(Obj_name.SvM_name,
parameters)

In fact, there is no essential need for a client
to distinguish between the case where results are
returned form the called SvM and the case where
results are returned form another SvM.

Actually, one can take the view that accepting
results returned form the called SvM is a special
case of accepting results returned form any SvM
in the system.

3. Deadline specification and service
time guarantee

As mentioned in the overview of the TMO
scheme, the designer of each RT object can
provide a guarantee of the timely service
capabilities of the object by indicating the
execution time-window for every output produced
by each service method in the specification of the
service method advertised to the designers of
potential client objects. Actually the execution
time-window associated with every output form
every TT method is also a part of the guarantee.

An output action of a service method ma be
one of the following

(1) An updating of a portion of the ODS;

(2) Sending a message to either another RT
object (which may or may not be the client) or
a device shared by multiple objects;

(3) Placing a reservation into the reservation
queue for a certain TT method that will in
turn take its own output actions.

The specification of each service method which
is provided to the designers of potential client RT
objects, must contain at least the following:

(1) An input specification that consists of
(la) the types of input parameters that the

server object can accept and

@opyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

3=/ Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme

(1b) the maximum request acceptance rate,
i.e., the maximum rate at which the server
object can receive service requests form
client objects;

(2) An output specification that indicates the
maximum delay (not the exact output time)
and the nature of the output value for
every output produced by the service
method.

If service requests form client object arrive at
a server object at a rate exceeding the maximum
acceptance rate indicated in the input specification
for the server object, then the server may return
exception signals to the client objects. The system
designer who checks an interconnection of RT
objects can prevent such “overflow” occurrences
through a careful analysis. The designer should
ensure that the aggregate arrival rate of service
request at each server object does not exceed the
maximum acceptance rate during any period of
system operation. In order to satisfy greater
service demands presented by the client objects,
the system designer can increase the number of
server objects or use more powerful execution
engines in running server objects.

Before determining the maximum delay specifi-
cation, the server object designer must consider

the following.

(1) The worst-case delay form the arrival of a
service request form a client object to the
initiation of the corresponding service
method by the server object;

(2) The worst-case execution time for the
service method from its initiation to each
of its output actions.

On the other hand, a client RT object imposes
a deadline on the cooperating distributed object
execution engines for producing the intended
computational effects including the execution of
the called service method and the arrival of the
return results at the client object If this deadline

is violated, the execution engine for the client

object invokes an appropriate exception handling
function.

The specifications of the TT methods which
may be executed on requests from the service
method must also be provided to the designers of
the client objects which may call the service
method. The specification of such a TT method
must contain at least the time triggering
specification and the output specification. There is
no input specification. The output specification
indicates, for every output expected from the
execution of the TT method, the exact time at or
by which it will be produced and the nature of
every value carried in the output action.

IV. Multi-level multi-step design
with the TMO structuring

First, the system engineering team describes the
application environment as the TMO Mini-Theater
in Figure 2, without the components enclosed by
square brackets. The components in brackets
describes sensors (such as radar) which do not
yet exist because the system engineering team has
not decided which types to use.

The information kept in Mini-Theater is a

Vini-Theater
Access Capability (to other TMO's) None
Object Data Store
Mni-Theater Space (=Sky+Land Space)
Flying Airplane Group Container
Information(=Environment)
Flying Object Tracking information(=Reporter)
[Radar1 onLand]
[Radar2 on Land |

SpM "Update the state descriptors in ODS"
Update the state of Target in Land

[Update the state of Radar1 on Land]

[Update the state of Radar2 on Land |

[Update the state of Flying Airplane Group Contairer |
[Update the state of Reporter on Land |

SviM

Receive Flying Airplane Information From FAGC
Receive Request From Radars

Receive Flying Airplane Information From ASPACE
Receive Reporter From Radars

Fig. 2 High-level specification of the Mini Theater TMO.

Copyright (C) 2003 NuriMedia Co., Ltd. 995
www.dbpia.co.kr

P2 A18435] =4 °02-10 Vol.27 No.10A

composition of the information kept in all the
state descriptors within its object data store. Here
the object data store basically consists of the state
descriptors for the following three environment

components:

mFlying Airplane Group Container information

(Environment)

mFlying Object Tracking Information (Reporter)

m Mini-Theater Space(Sky and Land)

Corresponding to each of these state descriptors
of environment components is a spontaneous
method that periodically updates the state
descriptor.

Conceptually, spontaneous methods in Mini-
Theater TMO are activated continuously and each
of their executions is completed instantly.
Spontaneous methods thus represent continuous

state changes that occur naturally in the

environment components.
Multiple methods
simultaneously can be used to precisely represent

spontaneous activated
the natural parallelism that exists among
environment components. The state descriptor for
the theater space not only provides geographical
information about the theater but also maintains
the position of every moving component in the
Mini-Theater. This information is wused to
determine the occurrences of collisions among
components and to recognize the departure of any
component from the Mini-Theater. The Mini-
Theater object is more than a mere description
of the application environment; it is also a
simulation model. To support simulation, the
designers choose an activation frequency for each
spontaneous method such that it can be supported
The behavior of

the environment can be simulated. This practical

by an object execution engine.

Control Computer System In Reporter

Access Capability (to other TMOs)
Radar (Accept_spot_check_request)

Object Data Store

Radar data received, Flying airplane tracking information

SpM
SpM1 Radar Data Processing Step

update the flying object tracks”

- “ Process all the radar data received since the last processing cycle,

MC : for T = from TMO_START + WARMUP_DELAY_SECS
to TMO_START + SYSTEM_L IFE_HOURS every PERIOD
start-during (T, T + START_WINDOW) finish-by T + DEADLINE
InputSpec : Radar data received in the object data store
QutputSpec : <deadline : xxx msec> Reflect changes onto the object data store,
i.e., Radar data received, Flying airplane tracking info.
<deadline : xxy msec> Send spot—check radar requests to Radar if -~ ;

SwW
SwM1 Receive_from_Radar_on_Land (pos_|ist)

position, time, predicted_time)

in the object data store
SWM2 Accept Advice from - < Accept-via— .>

< Accept-wi th-Delay_Bound-of ACCEPTANCE_DEADL INE
under MAX_REQUEST_RATE finish-within EXECUT ION_TIME_LIMIT>
—“ Receive from Radar_on_Land the information on all recent detections.”
InitiationCond : Other SwM1 invocations are not in place.
InputSec : pos_list = array of (return_type (=scan_search/spot_check),

QutputSpec : <deadline : yyy msec> Deposit the radar data received

Fig. 3 Intermediate Specification of the control computer system for Command Post.

Gepyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

=1/ Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme

simulation is of course less accurate than the
unexecutable description based on continuous
activation of spontaneous methods. In general, the
accuracy of a TMO-structured simulation is a
function of the chosen activation frequencies of
spontaneous methods. Next the system engineering
team decides which sensors to deploy. Sensors
include two radars located on land. Once this is
done, Mini-Theater can be expanded to
incorporate all the components enclosed by square
brackets in Figure 2. The object data store now
contains the selected sensors. The two radars
loaded on Reporter are described in the state
descriptor for the Reporter.

Now the system engineering team should also
decide how to deploy the computer-based control
system in the Mini-Theater. The functions of the
control system will be determined by the control
theory logic adopted. In this experimental
development, we deployed one control system
such as Reporter.

The Reporter contains a control system.
Initially, the system engineers proceed each
control computer system out of Reporter and
generate single TMO specification, as shown in
Figure 3. The specification in Figure 3 shows a
more complete specification structure than shown
in Figure 2. It has the autonomous activation
condition for the spontaneous method, the input
and output specifications for both the spontaneous
and the service methods, and the initiation
condition for the service method.

mThe input specification for a method
describes the actions of picking data during
the execution of the method such as
receiving the data coming from the external
client in the form of call parameters, picking
data from the object data store, or picking
data from the input devices.

sThe output specification for a method
describes the action of sending data to other
TMOs, sending data to the output devices,
and depositing data into the object data store.

mThe initiation condition for the service

method describes when the service method
execution can be initiated after being called
by a client. It is in a sense a concurrency
specification.

Now Mini-Theater is a network of three
objects. The system engineering team is now
ready to give the computer engineering team
the specification structured in the form of three
TMOs, plus an overall specification of the type.
Embed one control computer system in the
Reporter such that the computer system follows
the chosen control theory logic to control the
chosen sensors such as radars.

To outline the detailed design, we will consider
only the Reporter control computer system. To
design this system, the computer engineering team
initially produces a single TMO with an object
data store comprising two major data structures:

mRadar Data Queue(RDQ), which contains
radar data received; and

mFlying Airplane Group Container Tracking
(FAGCT) information, which contains infor-
mation needed for tracking flying airplane
objects.

Some of the radar data coming into RDQ
TMO happens as a result of spot-check requests
generated by FAGCT TMO. To determine where
to send the data, RDQ often references recent
spot-check requests generated by FAGCT. To
support this, FAGC sends a copy of each radar
request to RDQ.

Figure 4 shows the detailed design specification
of RDQ, as would be generated by the computer
engineering team. SvMI1 receives information of
flying airplane object in the Mini-Theater from
radar and SvM2 receives copies of spot-check
radar requests from FAGCT. SpMI1 periodically
sends radar data along with the ID numbers of
the requests to FAGC.

FAGCT analyzes the radar return data and
determines if the detected flying airplane object is
dangerous. If it is not, FAGC simply tracks it for

Copyright (C) 2003 NuriMedia Co., Ltd. 997
www.dbpia.co.kr

gh=-%418}3]3=7#] '02-10 Vol.27 No.10A

Radar Data Que ue

Access Capability (to other TMOs)

Flying Arplane Trackmg Information (Receive_new_info_from Radar Data_Queue)

Obje ct Data Store

/ Scan_Search Result: MVD - x msec : hst of {current_position, current_time}
{ Spot_Check Predicted : MVD ‘ y msec : list of {fobject_ID, predicted_position, predicted_tme}
spot Check Result: MVD - zmsec - st of {fcurrent_position, current_tune, predicted_tme }

o /

SpM

- Ifthere are ones thatmatch,

current_position and current_tme of the objects

SpMl Send New_Data_To_Flymg_Awplane Tracking_Information
- For each spot-check result m Data Set [Spot_Check_Result], match with predicted spot checks m
Data set [Spot_Check Predicted] by comparing the values of predicted tme

- Construct a message contammg the object ID from Data Set [Spot_Check Predicted] and the
current_position and current_time from Data Set [Spot Check Result]
- Send the message to Flymg_Amplane Trackmg_Information (via SvMrequest)
-Foreach scan search results m Data Set [Scan_search_Result], constructa message contammg

- Send the message to Flymg_Awplane_Tracking_Information (via SvMrequest).
AAC for T = from TMO_START + WARMUP DELAY_ SECS to TMO_START + SYSTEM LIFE_HOURS
every PERIOD start-during (T. T + START_WINDOW) finish-by T + DEADLINE
InputSpec - Scan_Search_Result, ==+ m the object data store
OutputSpec - <deadline ' xxx msec>Send bst of (object_ID. position, time) to -

SvM

Recewe From Radar on Land (pos_hst)

InitiationCond : Other SvMI mvocations are not mn place

SvMI <Acce pt-via-Service_Re quest_channel-with-Delay_Bound-of ACCEPTANCE_DEADLINE
under MAX REQUEST RATE finis h-within EXECUTION_TIME_LIMIT>

- Update Data Set [Scan_search_Result] or [Spot_check Result]according to the value of detection_type
InputSpec pos_list = armay of (return_type (=scan_search/spot_check), position, tie, predicted_time)

OutputSpec - <deadlne : yyy msec> Deposit the radar data receved~ =
SvM2 <Acce pt-via-~ >Receve_From Flymg Amplane_Trackmg mformation (spot_lst)

Fig. 4 Detailed design specification for Radar TMO

a short time and then forgets about it. Major
FAGCT computations are handled by spontaneous
methods, whereas service methods are designed
mainly to receive information and deposit it into
appropriate object data store segments.

In the real time simulation techniques based on
TMO object modeling, we have observed several
advantages to the TMO structuring scheme. TMO
object modeling has a strong traceability between
requirement specification and design, cost-effective
high-coverage validation, autonomous subsystems,
easy maintenance and flexible framework for
requirement specification.

V. Conclusion

Although the potential of the TMO scheme has
been amply demonstrated, much further research
efforts are needed to make the TMO structuring
technology easily accessible to common
practitioners. Further development of TMO support
middleware, especially those running on
new-generation RT kernels and multiprocessor
hardware, is a sensible topic for future research.
Tools assisting the TMO designer in the process
of determining the response time to be guaranteed

are among the most important research topics.

Capyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

-/ Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme

References

[1] A. Attoui and M. Schneider, “An object-
oriented model for parallel and reactive
systems”, Proc. IEEE CS 12th Real-Time
Systems Symp., pp. 84-93, 1991

[2] K. H. Kim et al., “A timeliness-guaranteed
Kernel model DREAM kemnel and implementa-
tion techniques”, Proc. 1995 Intl Workshop on
Real-Time Computing Systems and Applications
(RTCSA 95), Tokyo, Japan, pp. 80-87.0ct. 1995

[3] K. H. Kim, C. Nguyen, and C. Park, “Real-time
simulation techniques based on the RTO.k
object modeling”, Proc. COMPSAC 96 (IEEE
CS Software & Applications Conf.), Seoul,
Korea, pp. 176-183, August 1996

[4] K. H. Kim and C. Subbaraman, “Fault-tolerant
real-time objects”, Commun. ACM 75-82. 1997

[5] K. H. Kim, C. Subbaraman, and L. Bacellar,
“Support for RTO.k Object Structured
Programming in C++”, Control Engineering
Practice 5 pp. 983-991, 1997

[6] K. H. Kim, “Object Structures for Real-Time
Systems and Simulators”, IEEE Computer 30
pp.62-70,1997

[71 H. Kopetz and K. H. Kim, “Temporal
uncertainties in interactions among real-time
objects”, Proc. IEEE CS 9th Symp. On Reliable
Distributed Systems, pp. 165-174,0ct. 1990

Z & Z(Gwang-Jun Kim) 3]
19931d 29 : AL ZFE]
T3} EYFSHD
19953 29 : At ikl
e gt &4
(F3HAD
2000 29 : AT} TS}
AFE B} 2
(b
20003 ~20013 : Dept. of Electrical & Computer
Eng. Univ. of California Irvine Postdoctoral
2001 ~&AA - WpvlEl=2(F) FA A7
<FHA Eol ATMTE, AAZE B4l Z2 e,
°l58Al

L} A} Z(Sang-Dong Ra) 13
1968+ 29 : A&

A7) Es 2@
1980'd 2 : ZA=ehshar ohshsd

Z3(F3HAD
19953 29 : 3ok ojshd
Z(FEhirp

199513 ~1996\3 : Dept. of Electr ical & Computer
Eng. Univ. of California Irvine -3/

1998y : ZAIH S AAANREE 23 H9)

19733 ~&A) - AN AH5re]gshy w

20013 ~2002\d : Dept. of Electrical & Computer
Eng. Univ. of California Irvine <3--ul<

<FH] Heop AXZE BAL YAE B4, dlolE]
2 o554l TMO, A-$- Alsxz] 54l

8 & £Chul-Soo Bae) A3

19794 29 : WA)3t A=}
T3 EHE3HAD

1981 24 : AN ekl
AAgstaEs]
(44D

1988 8 : WA chgfaL ofshed
AAgstaEs]
(F&hHtrD

1991 ~3A) : FHgofsta A RHFATSHE w

1998 39 19~2001d 5 : FEosha A ES

Al 27t
199943 39 12~2001d 59 : THEosly st
Bty
2001 6% ~2002+1 104 &A) : FRsosha HAYa
%%Zo}'
<FHA Hol HAEAlzAE], JAFAE, Az
o 5

Copyright (C) 2003 NuriMedia Co., Ltd. 999
www.dbpia.co.kr

	Object Oriented Real Time Distributed Programming and Time-triggered Message-triggered Object(TMO) Scheme
	ABSTRACT
	Ⅰ.Introduction
	Ⅱ.High-level approach to programming real-time distributed systems
	Ⅲ.Interaction among RT objects and RT message communication
	Ⅳ.Multi-level multi-step design with the TMO structuring
	Ⅴ.Conclusion
	References

