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Interpolation Prefilters and Postfilters for Multiwavelet Systems

and Application for Image Compression
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ABSTRACT

As a multiwavelet filter bank has multiple channels of inputs, we investigate the data initialization problem by

considering prefilters and postfilters that may give more efficient representations of the decomposed data. The

interpolation postfilter and prefilter are formulated, which are capable of providing a better approximate image at

each coarser resolution level. A design process is given to obtain both filters having compact supports. Computer

simulations are performed to assess the performance of the proposed multiwavelet systems using prefiltering and

postfiltering, and we have found that the image compression performances of proposed multiwavelet systems are

superior than those of the single wavelet systems in terms of PSNR.

I. Introduction

Introduced in early 1980’s, the wavelets have
become an intensely studied subject for its
applications to signal processing. One of the most
common applications of wavelets has been audio
or visual data compression as multiresolutional
analysis decomposes a signal over multiple
time-frequency channels ',

In signal analysis, we desire a symmetric or
antisymmetric wavelet that gives a high order
approximation. However, the orthogonal wavelets
with compact support are not symmetric. Recently,
multiwavelet systems have been introduced, where
multiple scaling functions and multiple wavelets
are used. A multiwavelet system can combine
symmetry and shorter supports with a high
approximation order and high regularity, which

was not possible with a single wavelet system '“.

As the filters of multiwavelet systems are of
matrix form and each filter has multiple channels
of inputs, we encounter a new problem of how to
input the data. This initialization problem has
been taken up by
applications to signal compression

researches  for
[10-12]

several
, but very
little experimental result was reported for image
compression because of the requirement for an
excessive computational effort.

In this paper, we present an application of
multiwavelet analysis to image data and undertake
a general study on preconditioning a multiwavelet
system. Our objective is to apply a multiwavelet
transform on a 2-D image for data compression.
As matrices do not commute in multiplication, we
derive multiwavelet decomposition and reconstruc-
tion algorithms with a great care to yield the
perfect reconstruction condition of the analysis
and synthesis matrix filters. Conditions on inter-
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polation prefiltering and postfiltering are given.
These are applied to several specific multiwavelet
systems to examine their image compression
performances in comparison to single wavelet
systems.

The paper is organized as follows. In Section
2, multiwavelet theories are reviewed, and
multiwavelet ~decomposition and reconstruction
algorithms are presented. In Section 3 we exploit
the problem of preconditioning multiwavelet
systems where we define a compact data structure
for vector-valued sequences, and design prefilters
and postfilters for severalmultiwavelets systems.
The experimental results on image compression
using the prefilters and postfilters on several
multiwavelet systems are given in Section 4.
Finally, the conclusions are made in Section 5.

II. Multiwavelet System

In this section basic theories on multiwavelet
systems are presented. In order to obtain a
complete characterization of multiwavelet analysis,
multiscaling  functions and multiwavelets are
introduced, and the multiresolutional decomposition
and reconstruction relations are discussed.

2.1 Multiscaling Functions and Multi-
wavelets

Let us define a multiresolution analysis of

L*(R) generated by several scaling functions, with

an increasing sequence of function subspaces

{‘/J}IEZ in L’ (R):
folc..cv,cv,cv,c..c }R) )

vV

Subspaces ' jare generated by a set of scaling

$'.0%....0" (namely,

functions) such that

functions multiscaling

V,=clos, , <¢;:1sm<rkeZ> VjeZ 2)

ie., V) is the closure of the linear span of

Cop¥fight (C) 2003 NuriMedia Co., Ltd.

k’j”.'k }ISer.ke:in L*(R), where

07 (x)= 229" (2 x—k), Vxe R 3)

Then we have a sequence of multiresolution

subspaces ;) generated by a set of multiscaling
functions, where the resolution gets finer and
finer as j increases.

Let us define inter-spaces W <L(® such that
Via=V,®W,. VjeZ, \here the operator (@)
denotes a nonorthogonal direct sum. W, is the
complement to V; in Y, and thus W, and W,
with J#lare disjoint but may not be orthogonal
to each other. If W, LW, \/j#! we call them

semi-orthogonal wavelet spaces“al

of construction, subspaces W, can be generated

. By the nature

by r base functions, ¥'W’...V'that are

multiwavelets. The subspace W, is the closure of

m .
the linear span of {V’-k }ISer.ksZ :

W, =clos, , <yl 1<m<rkeZ> VjeZ @)
where
v (x)= 2%y (2 x—k), Vxe R (5)

We may express multiscaling functions and

multiwavelets as vector functions:

0'(x) y'(x)
dx)=| M | y(x)=| M Vxe R
0" (x) v’ (x) (6)

Also, in a vector form, let us define

0,4 (x) = 27202/ x—k) and

l//‘/'k(x) = 2//2V/(2/X—k). Vxe R (7)

Since the multiscaling functions " € Voand the
multiwavelets ¥" €W, are all in Vi, and since

V| is generated by
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pro=2"¢"x-b},_ .,

there exist two [’ matrix sequences {H rl}nEZ and

{Gn }nEZ such that we have a two-scale relation

for the multiscaling functions @(x):

¢(x)=2Y H,6(2x—n), xeR
neZ (8)

which is also called as a two-scale matrix
refinement equation (MRE), and for multiwavelet

y(x):

v(x)= 220,,(2)(2.\'—"), x€eR
neZ (9)

where G, and . are rxr square matrices.
Moreover, since all elements of both #(2x) and
¢2x—=1) are in V, and Vi=Vo®W,  there exist

two I matrix sequences {#,}., ana G.}..
such that

0Qx—k) =Y |H! 90— +Gl ,wix-n)| Vkez
neZ
(10)

which is called the decomposition relation of ¢
and ¥. We here intentionally transposed the

matrices of H and Gand reversed indexing
instead of 2n-k, for some convenience i~
representing formulas of dual relationship.

In the middle of 1990’s Geronimo, Hardin, and
Massopust  successfully  constructed a  very
important multiwavelet system using the fractal

interpolation *'¥. The GHM  multiwavelet is a

unique pair of sequences (1, 346.D  thar can
generate multiscaling functions and multiwavelets
and thus multiwavelet subspaces. Its scaling
functions and wavelets are orthogonal, very
shortly supported, symmetric or anti-symmetric,
and it has second order approximation so that
locally constant and locally linear functions are in

V,. Another example of orthogonal multiwavelet

is cardinal m-balanced orthogonal multiscaling and

multiwavelet systems, where m stands for the
approximation order of the cardinal balanced
orthogonal multiwavelet systems. For more details
on cardinal balanced orthogonal multiwavelets,

refer to the paper written by Selesnick .

2.2 Multiwavelet Decomposition
and Reconstruction
From the formulas (8), (9) and (10), the

following signal decomposition and reconstruction
algorithms can be derived. Let V€V, and
W€ W/ so that

v;(x)= ZL‘M P2 x—k)= Zc‘/’_kd)(ZJ.r—k):
kez kez (11)

wi()=Yd,, w2 x—k)=Yd y2 x—k)
rez fez (12)

where () denotes a dot product between two
vectors and (") denotes the transpose operator.

The scale factor 2//? is not explicitly shown here
p y

for simplicity but incorporated into data sequences

¢uand 9;x. By the relation v, =V, ®W,

v () =v, (0)+w, (%)

=6 02 x—k)+ Y d, W x—k), VeZ 13)

keZ kezZ

Thus we have the following recursive decom-

position (analysis) formulas:

Cjrk = ;Hu—u"/u :Z',Hﬂ.‘",‘uﬂn VjeZ (14)

d,fu- = ;anlk(/‘n = ;G—n(',.:k»n‘ VjeZ (15)

"u(: {(“.k }k ) is

decomposed into €, and d, data sequences, and

An  original data sequence

the sequence €| is further decomposed into ¢»
and d,data sequences. Keeping this process
recursively, the  original  sequences Cois

decomposed into @, d, and 95, and on. Note
that this process continuously reduces the data
size by half for each decomposed sequence but it
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conserves the total data size.

Let Dy, K21 be the  subsampling
(downsampling) operator defined by
(D x)n)= x[kn] (16)

where K is a subsampling rate and X is a
sequence of vector-valued samples.
The decomposition formulas can be rewritten in

the Z-transform domain as

cj_l(Z):DzH_(Z)Cj(Z) (17)
d; (2) =D,G"(2)c;(2) (18)
where the superscript (-) denotes reverse

indexing, ie, H =H'.

From the two-scale relations (8), (9) and form
(11), (12), we have the following recursive
reconstruction (synthesis) formula:

cf-" = ZZ(H[—ZH(‘}—LH +GZ.~2 d )

n* j-ln

19)

Let Ux.K21 be the upsampling operator
defined by

x[l} if s an interger
(U len] = K K

0, otherwise (20)

where K is an upsampling rate and X is a
sequence of vector-valued samples.

Then the reconstruction formula can be
rewritten in the Z-transform domain as

¢, (2)=2H" (D,¢,,()+ G (I d ., (2)] @

The decomposition and reconstruction systems
implemented by multiwavelet filter banks are
shown in Figure 1, where the system (a) is the
exact implementation of our equations derived. If
we take reverse indexing for all filters, we have
the system (b), and the multiwavelet decompo-

sition formulas become

Cop¥ftight (C) 2003 NuriMedia Co., Ltd.

¢;,(z)=D,H(z)c;(2) 22)

d; (2) = D,G(2)c;(2) (23)

and the reconstruction formula becomes

(b) Multiwavelet filter banks by reverse indexing

Fig. 1 The multiwavelet transform filter banks. Filters
are rX rmatrices and data paths are r lines,
where r=2 in our examples. The multiwavelet
systems (a) and (b) are equivalent, except that
filter indices are all reversed between the two
systems.

¢,@=2H @U,e,,(+G @U,d,, )| (4

Note that the input data €jis a sequence of
vector-valued data. Every data path has r lines,

rXr

and filters are matrices. We restrict

r=2 in this paper.

Constructing a vector valued sequence € from
a signal or an image is nontrivial. As a 1-D
input signal is vectorized, the direction of filter
indexing will affect the reconstructed signal in an
undesirable way, if the vectorization scheme does
not match with filter indexing. This effect does
not happen in a scalar wavelet system, whose
filters are not matrices. As we do not take
reverse indexing for data sequences, we will take

the system (a) of Figure 1 in our implementation.

Il.Preconditioning Multiwavelet
Systems

In this section we consider multiwavelet

www.dbpia.co.kr
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systems that analyze discrete data, and investigate
how to precondition a multiwavelet system by
prefiltering input data, which is not necessary for

the case of single (or scalar) wavelet systems.

3.1 Prefilters and Postfilters
Consider the multiwavelet series expansion :

() = ToRit—k
fi(t) Z C,_k(b ) 25)
From a given 1-D signal x[nl, construct a

vector-valued sequence *[n] by
x[nr]

x[n] = M T 0 |
x[nr + r-1] (26)

Let us define a prefilter ©(z), which maps a
vector-valued sequence space onto itself, such that
the coefficient vector sequence €o.x is obtained

by filtering x[n]:
¢y (2) = 0(2)x(2) 27

For any J<0, €+ is decomposed to

{le;u-d,iidby  a  layer of multiwavelet

decomposition. Recursive multiwavelet

decompositions down to a resolution level J <0
give us a set of decomposed data sequences €.k

and {d;s Yicjeo. Recursive multiwavelet

reconstruction from the decomposed data set gives

the original coefficient vector €o. .

Then X(2) is reconstructed by applying a
postfilter P(z):

x(z) = P(2)c,(2) (28)

The postfilter P must be an inverse of the

prefilter € up to some unit delay for the perfect

reconstruction:

P(2)Q(2)=z"'l, for some integer [. (29)

Copyright (C) 2003 NuriMedia Co., Ltd.

We may assume /=0 (no delay) for
convenience.
Define

x,(2) =x(2) anq *,;(2)=P(2)c;(2) (30)
Then {*;}j<0 are the projections of X onto

(discrete-time)  multiscaling spaces at lower

resolutions. This implies that a postfilter should be

Fﬁ?z‘y» ol el o)D)l
! o) P() I

5] () (12—

Fig. 2 Prefilter and postfilter blocks. A unit delay and
downsampling in a prefilter block (a) vectorize

s c2[n] ?[n] —

the 1-D input data sequence ;[ to a
vector-valued sequence, where the prefilter
output leilnlcilnll s the input to
multiwavelet decomposition filter banks. A unit
delay and upsampling in a postfilter block (b)
serialize the two-channel postfilter output vector
sequence to the 1-D output signal (7],

where  [cjlnlcinlare from the outputs of
multiwavelet reconstruction filter banks.

applied to a coefficient vector Cj if we want to

see a decomposed signal at the resolution level
i<l

For an r-channel multiwavelet system, the
construction of a vector-valued input sequence
from an 1-D signal can be implemented in a
prefilter block by serial-to- parallel conversion
(vectorization) by using r-1 unit delays and then
downsampling each channel at the rate r. The
block diagrams of prefilter and postfilter for a
2-channel multiwavelet system are shown in

Figure 2.

3.2 Interpolation Prefilter and Postfilter
In the multiwavelet case, however, in order to
avoid the undesirable visual effect, we need a

prefilter that computes multiscaling coefficient

Ca.k

sequence from a discrete-time input signal

before starting the multiwavelet decomposition

1912 Here, we develop a process of finding a
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pair of prefilter and postfilter such that

= Tn. _k
£, @ Ek)c @t — k) -

interpolates an original signal *.[n]. Since we
have r scaling functions, a continuos-time signal
f.(1)is sampled at the interval of 1/r at the O-th

resolution level:

n 7 n n T
S =Yl up(==k) =Y p(——k
f,,(r) Mc .¢(r ) kEZ¢(r ) Cou 32)

and we impose an interpolation property by

n
f“[7] = xD[n]_ We

construct vector-valued

sequences folnl and  X,[7]from the sampled

sequence f,,(%) and the 1-D signal x,[n]

respectively:

fo(n)

f,(n+ l)
f,[n]:= M

f"(f'l # r__l)
r

x,[nr]

x.[n]=| %o [nI:/[+ 1]

o

x,[nr+r—1] (33)

f,,[%l = x,[n]

then the interpolation condition

gives the following relation :

folnl=x,[n)= Y P, ,c,lk] =Y P, [n—k]
keZ keZ (34)

where Puis an rXr matrix sequence and defined
by

B 7

o(n)"
o(n+ T
T

M

o(n+ 1Ly (35)
r

L -

Copyright (C) 2003 NuriMedia Co., Ltd.

This is an interpolation postfilter that maps the
space of scaling coefficients ¢;[k] to the space
of sampled signals /,[7]. At any resolution level
J, a decomposed signal can be obtained by
filtering scaling coefficients ¢;[%] by the postfilter

P .

n.

x,[n]=kE§;R.,kc,[k1=kEZZPkc,[n—k] -

This relation is expressed in the Z-transform

domain as
x,(2) = P(2)¢,(2) 37)

where P()=2 P,z By (353), P,is a finite
sequence (FIR filter) if the scaling vector function

9 is compactly supported.

Furthermore, we define a prefilter €(z) such that

0(2)P(z) = P(2)Q(2) =1, (38)

Then the scaling coefficient ¢;(2)is obtained by

filtering the signal *,(2)

¢;(2)=0(2)x;(2) (39)

To have an FIR solution to the above condition
(38), det (P(z)) must have the form of det
(P(2)) =az™' | where O is a constant and [ is an
integer.

For the GHM orthogonal multiwavelet system,
an interpolation postfilter Pis obtained from the
GHM scaling functions:

Po)=|° 1.73210618z ™
1.95965444  -0.51963185-0.519631854z" |  (40)

The corresponding prefilter Qis computed from
the condition P(2)Q(z) =1,

0(z)=P'(2)= [0-15309232z +0.15309232 0.5 1030773]

057735174z 0
(41)
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For the cardinal 2-balanced orthogonal multi-
wavelet system, we obtain the postfilter and

prefilter as

0 v2:” o N2
P(*)—]: 27" :| Q(M)_|i:3/\/§ ():| 42)

IV. Computer Simulations

With the prefilters and postfilters that we have
designed for multiwavelet systems, we have
investigated the applications of these systems to
image compression and examined their compres-
sion performances.

Computer simulations are performed on several
levels of compression ratios using multiwavelet
systems (two GHMs and cardinal 2-balanced) in
comparison to some single wavelet systems
(Daubechies’D4 and D6 orthogonal wavelets). We
consider a simple compression scheme with a
uniform  quantizer, which removes a certain
number of small values from high-passed
subimages but keeps the larger values to achieve
a specified compression ratio. We used six test
images (515X512 X 8-bit)
Airplane, Baboon, Peppers, Sailboat, and Wavy in

including Lena,

our experiments. Our experiments suggested that
wavelet decomposition up to the 3rd or 4th level
would give a reasonably high compression ratio
and a good reconstruction.

To describe the image fidelity, PSNR (peak
signal-to noise ratio) is defined by

M

>3 (fli j1-sli, j)?

2551 \f—'
PSNR(dB):=20 log[ MN 55
43)

where /' is a MXN reconstructed image and s
is the MXN original image. The PSNR values
shown in Table 1 are the average values taken
from the experimental results for the six test
images at each given compression ratio.

From the simulation results, we observe that
the 4-coefficient GHM orthogonal multiwavelet
systems perform better than Daubechies’ D4

Copyright (C) 2003 NuriMedia Co., Ltd.

wavelet (4 coefficients). The cardinal 2-balanced
orthogonal multiwavelet filter (6 coefficients) gives
a better
Daubechies’ D6 (6 coefficients). When a certain
degree of image fidelity, i.e., PSNR = 28 dB, is
desired, the cardinal 2-balanced multiwavelet

compression performance than

system with interpolation prefiltering-postfiltering
gives the highest compression ratio than any other
wavelet systems. For some GHM orthogonal
multiwavelet systems, the interpolation
prefiltering-postfiltering provides a slightly better
compression  performance than an  orthogonal
2nd-order approximation prefiltering. In general,
orthogonal multiwavelet systems perform better
than single wavelet systems with comparable
support lengths, but with a small overhead of

computation.

Table 1. Performance comparison of wavelets in image

compression
PSNR(dB)
Cethpe Multiwavelets Single
Ratio Wavelets
GHM (o)| GHM (i) | CardBal2 | D4 D6
2 47.93 48.93 48.31 47.41 |48.23
4 40.50 41.01 41.33 39.48 |41.23
35.72 36.13 37.04 34.76 |36.87
16 31.89 32.26 32.92 30.96 |32.57
32 28.35 28.79 29.30 27.62 |28.81
64 25.60 26.03 26.07 2499 |25.53
128 23.04 23.38 23.38 26.69 (23.11
256 20.57 20.57 20.79 20.56 |20.67
Prefilter | Orthogonal | Interpolation | Interpolation N/A

V. Conclusions

In this paper data intialization problem for
disctete-time  multiwavelet systems has been
approached by preconditioning the multiwavelet
systems  using

interpolation  prefilters  and

postfilters. A design process for interpolation
prefilter-postfilter ~ for GHM  and  cardinal
m-balanced multiwavelet systems has  been
developed. These filters must be of the finite

impulse response type, or else, an orthogonal
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prefilter of some approximation order can be
designed. Using these filters, image compression
performances of orthogonal multiwavelet systems
have been assessed in comparison to the single
wavelet systems. In general, the orthogonal
multiwavelet systems perform better than the
single wavelet systems with comparable support
lengths, but with a small overhead of

computation.
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