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Blind Equalization using Higher-Order Statistics and
Fuzzy-ARTMAP

Jung-Sik Lee* Regular Member

ABSTRACT

This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or
not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original
channel coefficients based on fourth-order cumulants of the channel output, the other is to employ
fuzzy-ARTMAP neural network to model an inverse system for the original channel. Here, the estimated channel
is used as a reference system to train the fuzzy-ARTMAP. The proposed fuzzy-ARTMAP equalizer provides fast
and easy learning, due to the structural efficiency of fuzzy-ARTMAP; a small number of parameters, automatic
increase of hidden units, and the capability of adding new data without retraining previously trained data. In
simulation studies, the performance of the proposed blind equalizer is compared with both linear and other neural

basis equalizers.

I. Introduction

Intersymbol Interferences (ISI) arises in pulse
modulation systems whenevr the energy of one
received pulse does not die away completely
before the beginning of the next. ISI may be
caused by band limiting (as, for example, in
telephone  channels) or frequency selectivity
(fading or multipath propagation) as in digital
microwave radio and in mobile communication
systems. The most widely known equalizer is an
adaptive transversal equalizer, in which output
signal is compared to the expected signal and FIR
filter coefficients are adjusted in accordance with
the error between the desired and actual filter
output.

For the last three decades, many of blind
equalizers that do not use the known training
sequence have been proposed in the literature
beginning with Sato'", because there are some
practical situations when the conventional adaptive
algorithms are not suitable for wireless communi-
cations during an outage

(caused by severe

fading).

Most current blind equalization techniques use
higher order statistics (HOS) of the received
sequences, directly or indirectly, because they are
efficient tools for identifying that may be the
nonminimum phasem‘. The HOS based techniques
have the capability to identify a nonminimum
phase system simply from its output because of
the property of polyspectra to preserve not only
the magnitude but also the phase information of
the signal.

As a new approach for channel equalization,
concerned  with

many researchers have been

applying neural networks, such as multilayer
(MLP) and radial basis functions
to both the and blind

17 However, each of these

perceptrons
(RBF),

equalization systems

conventional

networks internally has significant shortcomings.
MLP basis equalizerstypically require long training
and are sensitive to the initial choice of network
parameters (especially initial weights). On the
other hand, RBF basis equalizer is simpler and
fast to train, but usually require a large number
of centers, which increases the complexity of

computation. In addition, it is not easy to
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determine with the number and the location of
centers required for training.

This paper develops a new method to solve the
problems of blind equalization, by combining the
advantages of HOS and a fuzzy-ARTMAP neural
network. The main purpose of the proposed blind
fuzzy-ARTMAP equalize is to solve the obstacles
of long time training and complexity that are
often encountered in the blind MLP equalizersm.
The proposed techniques firstly estimates the order
and coefficients of the original channel based on
the autocorrelation and the fourth-order cumulants
of the received signals. Then, an equalizer system
using a fuzzy-ARTMAP neural network is trained
with input sequences from the estimated channel
models.  Section II  presents the problem
assumptions and the cumulant-based channel
estimation algorithms are described. In the Section
III, a brief summary of fuzzy-ARTMAP network
is presented. Section IV gives the learning
procedure for the blind fuzzy-ARTMAP equalizer.
Simulation results are provided in Section V and
Section VI gives the conclusions.

II. Channel estimation

The block diagram of a base-band communica-
tion system subject to
Intersymbol interference (ISI) and additive white
Gaussian noise (AWGN) is shown in Fig. 1.
Assume that the received signal {y,} is

generated by an FIR system described by

Ve = ,20 Bisp—i+ mpy= Vit my (1)

Where {4,},0<i<p is the impulse response of the
channel and {s,} is i.i.d., nonGaussian. {s,}
could be a two-level symmetric PAM sequence.

The additive noise {#,} is zero mean, Gaussian,

and statistically independent of ({s,}.

n,
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S Vi N\ Y 2
Channel > ?  Equalizer >,

Fig. 1 Equalizer system
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1. Estimation of channel order

The autocorrelation technique is wused to
estimate the channel order that is required to
specify the number of centers in an RBF

equalizer. Consider the autocorrelation p,.

L 1=0
= ‘752(0;; T i @
Iy (gohf-kgi)' by
0.

Dp

where 6% = E[«n%] is noise variance, [ is
correlation lag. As shown in (2), the basic idea
of the autocorrelation technique for channel order
estimation is that when the lag/ exceeds the
correct order of the channel model, the
autocorrelation becomes zero.

For convenience, the normalized sample
autocorrelation is considered.

7012 z:[l( y}e_._V)(.VIH-I_}) 3)
/3 (ni=9 120

where N is the number of samples, and y is the

sample mean of y,

2}3@

y=—L% @

A sample autocorrelation, p, is regarded as

meaningful if it is outside the 95 percent
confidence interval

41.967% < b,swﬁﬁ (5)

The technique selects the last meaningful sample
autocorrelation as an estimate p , for the channel

order.

2. Channel coefficient estimation

Using the properties of higher order cumulants
and the problem assumptions, the following
expressions can be written for the channel
described by (1)
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Cy(L,m,n)=C (L,mn)+ C,(I,mn) (6)

C,(l,m,n) is the fourth-order cumulant sequence

of {y,}, which is defined as

C,(Imn)=M,(l,m,n)— M, (DM ,(n—m) %)
M, (mM ,(n—D—M ()M ,(m— 1)

where the second-order moments M (;) and the

fourth-order moments M,(/, m,n) of 'y, are

defined as

M(ND=E [y, ve+]] »
M1, m, n) = E[ Yk, Yo+ 1, Vi ms Vit o] 8)
, himn = 0, x1,%2,-
since {n,} is Gaussian, its  fourth-order

cumulants has zeros, which means
C,({,mn)=C ,(l,m,n) )
with knowing this fact, it is easy to show that,

C\(l,m,n)=
ﬂ—mﬁ.m.n) (10)
Ys AR PRURY TRy JPRRLL

=0

(13) can be represented as
CH=c (11

where C and care the matrix and vector
consisting of the estimated fourth-order cumulants,
and H is the unknown coefficient vector. The
solution of (11) can be given in an explicit form

as

H=(C%C) ™' Clc (12)

. Background of the Fuzzy-
ARTMAP Neural Network

Since the advent of ART (adaptive resonance
theory) as a cognitive and neural theory'gl, a
number of ART neural network architectures have
been progressively developed. These models
include ART2, fuzzy-ART, ARTMAP'*!".

Recently, a growing number of models

computationally synthesize properties of neural
networks, and fuzzy logic. Fuzzy-ARTMAP is one
such model, combined with ARTMAP and fuzzy
logic“”‘

Fuzzy-ARTMAP utilizes a minimax learning
rule that conjointly minimizes prediction error and
maximizes generalization. As learning proceeds,
the input and stored prototype of a category are
said to resonate when they are sufficiently similar.
When an input pattern is not sufficiently similar
to any existing prototype, a new node (or hidden
unit) is created to represent a new category with
the input patterns as the prototype. The meaning
of similarity depends on a vigilance parameter p,
with0<p<1 . If p is small, the similarity
condition is easier to meet, resulting in a coarse
categorization. On the other hand, if p is set
close to 1, many finely divided categories are
formed. By selecting the desired level for the
vigilance parameter, the user has control over the
performance of the work. Details of the
fuzzy-ARTMAP network are given in [8].

IV. Implementation of the blind
fuzzy ARTMAP Equalizer

1. Training Patterns for Blind fuzzy-
ARTMAP Equalizer

A blind  fuzzy-ARTMAP

implemented in this section. It uses higher-order

equalizer  is

cumulants and a fuzzy-ARTMAP neural network.
Fig. 2 shows the block diagram of the blind
fuzzy-ARTMAP equalizer system.

In order to train a neural network to serve as a
channel equalizer, it is necessary to generate
appropriate training data. The following is the
training input to fuzzy-ARTMAP network, which
is generated by the receiver instead of being
provided by the transmitter

= 3 hix s (13)

where x, and », are input signal to the

estimated channel model {%;} and input signal to
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Fig. 2 The structure of blind fuzzy-ARTMAP equalizer
system

the  fuzzy-ARTMAP
Therefore, input patterns for the network is the
In this

equalizer  respectively.
7y, and the corresponding target is x,.
study, it is assumed that the network is trained to
reconstruct the originally transmitted binary signal
(1 or 1).

The estimated channel is characterized by its
transfer function, which in general has the form

HZ = ¥ hz (14)

where p is the estimated channel order. If ¢
denotes the equalizer order (number of tap delay
elements in the equalizer), then there are

M= 2""*"! different sequences

xk=[z\’k'xk—1,---yxk—p—q]7 (15)

and the corresponding received signal vectors,

R,, are represented as

7o =176, Ze1s eves =g 17 (16)
where
= Z:Oh,»x,,v,- (17

The training input patterns, { R}, can be obtained

by the following procedures
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where x,and R, i=1,2,---, M, are the combina-

tion of «x,, and training input pattern, respectively

Rl=[Rr'.IJ»Ri.l-'“,Ri.u]T (18)

In order for the training patterns to be suitable
for fuzzy-ARTMAP, firstly conversion process is
needed. Conversion process is to convert the
component of input patterns to values between 0
and 1. Thus, the following binary sigmoid
function is used to convert the actual interval of
received signal to [0,1]

Ax) = Tle—a:r (19)
where ¢ is the steepness of sigmoid function.
Secondly, the complement coding process is used
to prevent category proliferation, as described in
[8].

Thus, The final training input vectors after
converting and complementing coding procedures

are
A;=[a;, ail", i=1,2,.M (20)
where
a;=layy, @it @iql,
ai=[1—a;p,1—a;,....,1—a;,l,

= 1

2ii= T¥ exp(—oR,,) ,i=0,1,...q 20

The target value for each generated training
pattern is the correct value for x,_, for the
desired delay, <. A training output pattern with
target value 1 is represented by the vector (1,0);
a training output pattern with target value 1 is by
the vector (0,1).

The following is the training algorithms.

(1) Determine the training patterns
Set the input pattern for fuzzy-ART (a), and the
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corresponding output pattern for fuzzy-ART (b).

(2) Create the categories:

When training starts, no category is created. For
this reason, in the beginning, a category can be
made without any competition by fuzzy rule.
However, when more than one category have
already been created and a new input comes to
fuzzy-ARTMAP equalizer, the category will be
created by the following rule, and category choice
is indexed by /

c,@,)= M
a+|w,|
C,=max {C;;j=12.., N, 2)

where the (; is the choice function, and N,

denotes the total number of categories created.

(3) Check if resonance occurs:

When [A; A w, "A:I_] is greater than or equal to
p, a match happens. Otherwise, a mismatch
occurs. Despite that a match happens, correspond-
ing target for the introduced input pattern may
not be matched with the selected category. In this
case, vigilance parameter is increased until it is

slightly larger than A Aw, A, |_I. Then, the
search for another category starts, except the
previously selected categories. The search process
continues until the chosen category satisfies the
above conditions. If all the trial fail, a new

category is created.

(4) update weights
Once search ends, the weight vector is updated

according to the equation

Wi = BA, Awi - (A=BWws o

where J denotes the selected category index.
When £ is set to 1, that leads to the fast learning.

(5) Stop the learning
If any new category is created for all patterns

throughout the steps(1-4) above, retraining for all
patterns begins until no category is created.

V. Simulation Results

In this section, some results of computer
simulations are presented to demonstrate how
higher order cumulants and layered feed forward
networks can be utilized to form a blind adaptive
equalizer. For the computational convenience, it is
assumed that the binary signals (+1 or 1) are
generated at random with an additive white
Gaussian noise. Firstly, the channel order is
estimated with two different channel models.
Autocorrelations of channel observations were
computed using (3) and the results of them are
illustrated in Fig. 3. As shown in the Fig. 3,
channel orders were correctly revealed from their
normalized sample autocorrelations.

For the estimates of the channel coefficients,
Sdifferent realizations with the training sequences
equal to 512 are performed with SNR equal to
10 db. The mean value of the estimates is
shown in the Tablel.

125 o 1.25
training sequences = 1000 training sequences =1000

o 19 z2 17
5 £
5 075 5 0757
E E
g g
2 059 B .
?_j 5 a5 confidence interval
£
32 025 E, 025
~ = »
5 =
E 04 g o] PO
g S
Z z

215« 3 i [ TN i ) S R N OB5TTTrrrrrrIT

012345678910 012345678910
Autocorrelation lag Autocorrelation lag
(a) (b)

Fig. 3 Channel order estimation

9

(a) H(z) = 0.348+0.87z ' +0.348z

(b) H(2) = 0.227+0.462 ' +0.688z *
+0.462 ~°+0.2272

The results show that the channel is almost
correctly estimated from the channel output
observations.

Finally, the fuzzy-ARTMAP equalizer is trained
with the estimated channel model. The following

1105
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channel is assumed in the training procedure:

H(2)=0.5+1.0Z"" (24)

Among the favorable characteristics of this
network is the fact that there are relatively few
network parameters to be determined. The
steepness of the sigmoid function, 5, used to
convert the input patterns into the required
interval [0,1] and the vigilance parameter for the
network must be set by user. The network is
not particularly sensitive to the values of either of
these parameters. Sigmoid steepness parameter
values in the range[0.7, 1.0] were used.

Figure 4 shows the error rate comparison of
three kinds of neural network equalizers.

As shown in the graph, the performance of the
blind fuzzy-ARTMAP equalizer is superior to that
of the blind MLP equalizer, while producing
results as favorable as those in the blind RBF
equalizer. Even if the blind fuzzy-ARTMAP
equalizer’s performance is almost the same as that
of the blind RBF equalizer, it has more
advantages over the blind RBF equalizer
considering the cost and effort required in neural
network implementation.

Table 1. Estimation of channel coefficients

5.5 estimated channel
Original channel model oafficas
H(2)=0.5+1.02"" By = 1030554
’ ’ hy= 1.00076
hy = 0.35706
Hiz) = . - 087
0.38+0.87z ' +0.3482 > | M = 08766
ho= 0.34682

dg 10 (error probability)

—a&——  Fuzzy ARTMAP cqualizer
3
———  RBF cqualizer
——0—— MLP cqualizer
3.5 . T

T
5 7.5 10 12.5 15

Signal to Noise Ratio(SNR)

Fig. 4 Error rate comparison H(z)=0.5+1.0Z '
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VI. Conclusion

In this paper, a blind equalization technique is
discussed based on higher-order statistics and a
fuzzy-ARTMAP. The main procedures of the
proposed blind equalizer consist of two parts. One
is to estimate the order and coefficients of
original channel using higher-order-cumulants; the
estimated channel is wused to generate the
reference signal. The other part is to reconstruct
the originally transmitted symbols (signals) after
training the fuzzy-ARTMAP neural network. The
main purposeof the blind fuzzy-ARTMAP equalize
is to solve the obstacles of long time training and
complexity that are often encountered in the both
MLP and RBF equalizers. The blind fuzzy-
ARTMAP equalizer is fast andeasy to train and
includes capabilities not found in other neural
network  approaches; a small number of
parameters, no requirements for the choice of
initial weights, automatic increase of hidden units,
and capability of adding new input data without
retraining previously trained data. Throughout the
simulation studies, it was found that the blind
fuzzy - ARTMAP equalizer performed favorably
better than the blind MLP equalizer, while
requiring the relatively smaller computation steps
in training. The superiority of fuzzy-ARTMAP to
other neural networks makes the  blind
fuzzy-ARTMAP equalizer feasible to implement.
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