DEri=

=& 02-27-11C-2

g2 A1 83 3= %] "02-11 Vol.27 No.11C

Development of a Distributed Web Caching Network
through Consistent Hashing and Dynamic Load Balancing

Hwan Chang*, Jong Ho Park**, Ju Ho Park*** Kil To Chong**** Regular Members

ABSTRACT

This paper focuses on a hash-based, distributed Web caching network that eliminates inter-cache communica-

tion. An agent program on cache servers, a mapping program on the DNS server, and other components

comprised in a distributed Web caching network were modified and developed to implement a so-called

“consistent” hashing. Also, a dynamic load balancing algorithm is proposed to address the load-balancing problem

that is a key performance issue on distributed architectures. This algorithm effectively balances the load among

cache servers by distributing the calculated amount of mapping items that have higher popularity than others.

Therefore, this developed network can resolve the imbalanced load that is caused by a variable page popularity, a

non-uniform distribution of a hash-based mapping, and a variation of cache servers.

I. Introduction

The growth of Web traffic has led to a
considerable increase in the amount of traffic over
the Internet. This traffic causes a swamped server
and network, increased latencies at the end user,
and reduced network bandwidth available for other
requests.

A request might travel through multiple caching
systems on its way to the original server, since
cache servers are introduced to address these
problems. Caching reduces network bandwidth
usage, lessens user-perceived delay, and lightens
loads on the original servers [1]. As caching has
become an important topic, several cooperative or
distributed caching architectures have been
proposed to ameliorate the problems related to
fault tolerance and scalability that are the
disadvantages of the single cache architecture
[2]1[3][4][5][6]. However, most of these systems
consume excess bandwidth with packets caused by
inter-cache communication, although these systems
have higher hit rates with increased cache spaces

and client populations. Also, there are some

distributed ~ architectures ~ without inter-cache
communication, such as the hash-based request
redirecting scheme, TCP-based switching, and
TCP-based packet rewriting scheme [7][8][9].

The developed network in this paper chooses a
so-called consistent hashing method. A dynamic
load-balancing algorithm is then implemented to
dynamically resolve the unbalanced load that is
caused by a different page popularity and a status

variation of cache servers.

II. Consistent hashing and load
balancing

1. Consistent hashing

To distribute the objects across the cache
servers, clients should know which cache to query
for a specific object. Hashing is a desirable
approach for that purpose, because it is the
transformation of a string of characters into a
usually shorter fixed-length value or key that
represents the original string.

A standard hashing function is represented by
h(u)= Au)modp in this distributed network,

* Department of Control and Instrumentation Engineering, Chonbuk National University(chang921@chollian.net),
** Department of Mechatronics Engineering, Chonbuk National University(q1253@chollian.net),

**% Department of Computer Science, Chonbuk National University(juhpark@hotmail.com),

###% Division of Electronics and Information Engineering, Chonbuk National University(kitchong @moak.chonbuk.ac.kr)

T E 0 020367-0823, A<z} 12002 84U 23

Cop%right (C) 2003 NuriMedia Co., Ltd.
4 www.dbpia.co.kr

=~/ Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing

where « is a bit string that represents URL
(Uniform Resource Locators), Aw) is a general
hash function that makes a fixed-length value of
hashed result, and p is the number of available
cache servers. Our distributed caching network
uses so-called consistent hashing that is described
in [7] and is able to map a URL to a cache
server without regard to the variation of the
number of available cache servers, and there is
no need to send the status information of caches
to clients.

Ideally, the URLs are mapped into the unit
circle. The URLs are assigned to the closest
cache going clockwise or counterclockwise. If one
cache is removed from this network, the mapping
points of all URLs do not change and some
URLs should be remapped to other cache severs.

2. Mapping with consistent hashing

To implement this concept on a real network,
the virtual cache servers are introduced to map
the URL with the unchanged number p, which is
considered to be a live cache in clients. Then
every virtual cache instead of a URL is mapped
into the unit circle. The mapping with consistent
hashing is divided into two parts, client and
DNS(Domain Name System), as shown in Figure
1. A client keeps the invariable mapping informa-
tion between URLs and virtual caches via the
hash function and the modulo- » division function.
And a DNS keeps the variable mapping
information between virtual caches and real caches

via communication with cache servers.

3.Dynamic load balancing
The numbers of copies of the cache servers

URLO Yeache 1 IP of
Proxy &
URL1 YWoache 2
zore | i Pt |
. d . - _— :
e : file | ProwyB
. o | e——]
IP of
URLoo Vcache p Prosy C
Client DNS

Fig. 1 Mapping for consistent hasing

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

could be spread into the unit circle to produce a
more uniform distribution of virtual caches to real
caches [10]. However, increasing the copies of the
cache servers is not sufficient to achieve a
uniform distribution of virtual caches to the
caches, although some extent of distribution is
achieved by simply increasing the copies because
there could be a random nature of a hash-based
mapping. Also there are many possibilities that
could disrupt the load balance, and the biased
load can be severe in case of hot pages or a
higher request rate. Thus, a dynamic load
balancing algorithm is implemented to dynamically
resolve the biased load.

The load information on cache servers is
periodically collected by a kind of agent program
and is sent to a DNS server. Another mapping
program that is performed on a DNS server
analyzes the load information and then modifies
the mapping information in a zone file of a DNS
server to balance the load among cache servers.

A mapping program that is performed on a
DNS server periodically classifies a cache server
as either busy, idle, or normal node. The values
that determine the busy line and the idle line are
defined by user, according to the desired level of
deviation. And, these values are represented by
v(v=0) and w(w=0), where M is the mean
value of the all nodes and M is the mean value
of the busy nodes and the idle nodes. As a real
workload, the load for the distribution in this
algorithm represents the number of requests during
desired seconds..

Following pseudo-code shows the detailed

procedure of the proposed algorithm, where 7,

is the load of a node i, p is the number of
busy nodes, and ¢ is the number of idle nodes.

| request/receive the load information

2 calculate the standard deviation, D

3 if D > desired limit

4 define the node with M+ p and M— w
5 calculate the mean value,

|
M = /)+a(gln’ g ZIH')

1041

Cop%zlzght (C) 2003 NuriMedi

FHEAI8}5) 254 "02-11 Vol.27 No.11C

6 determine the surplus load,

DL= 3 (n,— M)

7 for j — 1to ¢
load to be distributed to idle node j,
DI+ ;21,'1ﬂ
,ﬁln'
9 calculate the number of popular virtual caches

10 modify/reload the zone file (round-robin DNS)

11 wait for desired seconds

The load metric that is the primary concern
throughout this paper is the rate of HTTP
(Hypertext Trasnfer Protocol) requests per second
to a cache server. The request rate to a cache
server is selected according to the hit rate and
the effect of hot pages, without taking into
consideration the performance differences among
the cache severs.

. Network configuration

1. Modification of Request generator

For workload generation, we used the tool
called Surge [11] that was developed at Boston
University. Each client system in Surge could be
a set of users that always talks to the fixed local
cache server without modification, in the case
where the cache sever was used between server
and client. Surge was modified to send requests
to the corresponding cache severs according to the
hashed results. As a hash function, MD4 [12] is
implemented to hash the URL. MD4 is generally
known as a faster algorithm, among standard hash
functions in the realm of cryptology. In every
request, the number of a set of virtual caches
divides the 128-bit output of MD4. Consequently,
a DNS query is sent to resolve the corresponding
real cache server among the set of virtual caches.
At that point, the TCP(Transmission Control
Protocol) connection is made to the real cache
server.

After tuning Surge to compile under Linux, C
language functions of MD4 and modulo-1000 are
linked up with Surge.

a Co., Ltd.
www.dbpia.co.kr

2. Development of Log file analyzer

A distribution of Squid-2.1 Release is installed
as a cache proxy server [13]. To communicate
with the DNS server, a kind of agent program
runs on the cache that analyzes the Squid’s
access log and sends the load information to the
mapping program on the DNS server. When a
DNS server queries an agent program, it replies
with the load information that is represented by
the desired format, after analyzing the log file
during the last desired seconds.

The communication module of the agent
program is coded using C language, and the log
analyzing module of that program is coded using
Perl script. Because the log files have a massive
amount of data and should be analyzed with the
least possible delay, Perl is considered a very
powerful scripting language for that purpose.

3. Development of mapping program

A BIND 823 distribution is installed to
configure a DNS server [14]. A mapping program
is developed to satisfy the consistent hashing
function and dynamic load balancing function.
The program was developed with C++ language
and complied under Linux platform to control the
BIND process on the DNS server. The binary
tree is utilized for storing the hashed values of
all cache servers that are comprised of virtual
caches. In case of variation, all virtual caches are
rewritten into copied caches with consistency
under the order of a binary tree. That is, some of
the virtual caches with higher popularity that
correspond to the surplus load are distributed to
all the cache servers or desired cache servers
using DNS Round Robin [15].

4. Setup of distributed caching network

Figure 2 shows a diagram of the distributed
Web caching network that is implemented to
achieve the consistent hashing and the dynamic
load balancing algorithm. To request a desired
URL, Client sends the query with virtual cache
name that is produced by the hash function and
the modulo- p arithmetic. And then, DNS resolves

-/ Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing

=)

AR
e’

proxy cache A proxy icne B proxy cache C

Web server

Gl ONS server

virtual cache 1 virtual cache 2 virtual cache 1000

client group A client group 8 client group Z

Fig. 2 Distributed Web caching network

the virtual cache name into the real IP(Internet
Protocols) number of one of the live cache
servers.

The mapping program on DNS server requests
the status and the load information of cache
servers every 30 seconds. An agent program of
the cache server replies to it with a request rate
after analyzing the log file during the last 30
seconds. The mapping program modifies the zone
file, and then BIND is reloaded with the modified
zone file and continuously serves as the virtual

cache resolver.

IV. Simulation results

1. Comparison with single networks
Figure 3. (a) shows that the developed network
has a relatively lower miss rate than one of three
single caching networks, which leads eventually to
a higher hit rate, a lower latency, and a lower
bandwidth demand. Figure 3. (b) shows the
stacked graphs when three single cache
architectures are incorporated into a cooperative
caching network with ICP [16]. The amount of
ICP that would be increased is critical when the
request rate is increased or the capacity of a
cache is increased, whereas this distributed
caching network does not have a chance of
having an increased rate of communication

packets.

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpia.co.kr

30
A | -BF Hashed R

Al -& Single 1000
20 y

‘& 800

600

0| g Boasaa

| PR
(=P P 400 CJICPtoB
. o N B (P to
10 20

0 20 40 60 0
30 seconds/bucket

cache sizes in MB

Fig. 3 (a) Miss rates, (b) Request rates

2. Performance of dynamic load

balancing

To test the operation of a dynamic load
balancing against the varying status of cache
servers, the processes of cache servers are
intentionally manipulated to make the changes of
status. Figure 4. (a) shows the result when a
cache server B is died at 10 minutes and a cache
server C is died at 20 minutes, successively. Also,
this network restores the original mapping
information on returning the previous condition, as
shown in Figure 4. (b).

To prevent from being congested into a specific
cache, the previous method that is introduced in
[7] spreads all of the hot virtual caches to all of
the other virtual caches. Then, the number of
virtual caches is slowly reduced by subtracting
one at a time. However, in this paper, the status

£ a00 H T T T 1]

Q

= Ll 1]]

= i i ' ‘ " i

5 B00}---- e B R SRS B
[1 1 1 [l 1 1l

g L e -
R B B i s S
5 g’ 24 —— Proxy A
3 Wi —— Proxy B
-8200 : ! ! E —— Proxy C
=

c

500

400

300

number of requests / bucket

0 10 20 30 40 50 B0 70
30 seconds/bucket

Fig. 4 Operation of dynamic load balancing

1043

gt EA18h3] = 8-2] °02-11 Vol.27 No.11C

standard deviation

] 10 20 30 40 50 60 70

. s —— wio DLB
5 W — w/DLB
£ 100t =TT l
-

s

@

s "
c

©

@

0 M0 20 30 40 50 60 70
30 seconds/bucket

Fig. 5 Standard deviation difference between
spreading and reduction method(upper) and
calculated distribution method(lower)

and load of all real caches are checked and
calculated at every requested time and the surplus
load of busy node is dumped into the idle node
if the deviation among caches breaks the desired
level. Therefore, this dynamic load balancing
method responds faster than previous method that
spreads into all caches including normal nodes, as
we can see in Figure 5. Lower lines of the both
figures show the standard deviations of the
distributed networks using each dynamic load
balancing method.

In both cases, the standard deviation in each
method is declined below the desired level of 50.
That is, the algorithms appropriately distribute the
load among initially unbalanced caches. However,
there is difference between response speeds.
Actually, this amount of the biased load can be
appeared in case of the modified number of live
caches or the presence of hot pages, though
virtual caches are initially well distributed. Also,
Figure 6 shows that degradation of the hit rates
does not exceed the 5 percent of the original hit
rate. Hit rate is a key performance measure of a
cache server and this result means that the
proposed system maintains a higher hit rate as
other distributed cache networks do.

Copyrlght (C) 2003 NuriMedia Co., Ltd.

105
100
95 +
90+
85+
80+
75}
70 H
65 — w/o DLB
—— w/ DLB
0 1ICI 2]] 3i2| 4.0 56 Sb 70
30 seconds / bucket

hit rate (%)

60

Fig. 6 Performance of hit rates

V. Conclusion

To implement a so-called consistent hashing, all
components that comprise a distributed Web
caching network were modified and developed,
respectively. And a dynamic load balancing
algorithm was applied to dynamically balance the
load, and it uses the real load on cache servers
as a basis of distribution. Moreover, this
algorithm continuously classifies the real caches as
busy, normal, and idle node and distributes the
surplus load of busy nodes to idle nodes at every
requested time to handle the balancing problem
effectively and fast. Also, a higher hit rate is
maintained without severe degradation.

Applying this simple algorithm, a DNS sever
can dynamically resolve the unbalanced load that
is caused by a different popularity among pages, a
non-uniform distribution of a hash-based mapping,
and a variation of the number of live cache
servers in the distributed caching network. Also,
this paper presents the possible applications for a
more advanced algorithm which is capable of
handling changes in a real network environment,
using the real workload other than request rate on

cache servers as a basis for distribution.

References

[1] B.D. Davison, “A web caching primer”, IEEE

WWW. dbpla co.kr

=+ / Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing

Internet Computing, Vol. 5, Issue 4, pp. 38-45,
2001.

[2] A. Chankhunthod, et al., “A hierarchical Internet
object cache”. Proceedings of the 1996 USENIX
Technical Conference, pp. 153-163, January
1996.

[3] L. Fan, et al.,
wide-area web cache sharing protocol”,

“Summary cache: A scalable

IEEE/ACM Transactions on Networking, pp.
281-293, Volume 8, Issue 3, 2000.

[4] S. Gadde, et al., “A Taste of Crispy Squid”,
Workshop on Internet Server Performance
(WISP9S), June 1998.

[5] R. Malpani, et al., “Making World Wide Web
Caching Servers Cooperate”, Proceedings of the
4th International World Wide Web Conference,
pp. 107-110, December 1995.

[6] P.S. Yu and E.A. MacNair, “Performance study
of a collaborative method for hierarchical
caching in proxy servers”, Proceedings the 7th
International World Wide Web Conference, pp.
215-224, April 1998.

[7] D. Karger, et al., “Web caching with consistent
hashing”, Proceedings of the 8th International
World Wide Web Conference, 1999.

[8] K.L.E. Law, et al., “A scalable and distributed
WWW proxy system”, Proceedings of ACM

Multimedia ’97, 1997.

[9] L. Aversa and A. Bestavros, “Load balancing a

o

cluster of web servers: using distributed packet
rewriting”, Proceedings of the 2000 IEEE
IPCCC, pp. 24-29, 2000.

[10] D. Karger, et al., “Consistent hashing and
random trees : Distributed caching protocols for
relieving hot spots on the World Wide Web”,
Proceedings of the 29th Annual ACM Symposi-
um on Theory of Computing, pp. 654-663, 1997.

[11] P. Barford and M.E. Crovella, “Generating
representative web workloads for network and
server performance evaluation”, Proceedings of
the ACM SIGMETRICS Conference, pp.151-160,
1998.

[12] R. Rivest, “The MD4 Message-Digest Algori-
thm, RFC 13207, Network Working Group,
April 1992.

Copyright (C) 2003 NuriMedia Co., Ltd.
www.dbpla.co.kr

[13] D. Wessels, “Squid Web Proxy Cache”,
http://www.squid-cache.org/.

[14] Internet Software Consortium, “ISC BIND”,
http://www.isc.org/products/BIND.

[15] P. Albitz and C. Liu, DNS and BIND(3rd
edition), O’Reilly & Associates, Inc., 1998.
[16] D. Wessels and K. Claffy, “Internet Cache
Protocol (ICP), version 2, RFC 2186, Network

Working Group, September 1997.

Z E{Hwan Chang) 39
19994 29 : A Eo s

Ale] ’J“‘—_‘LEU} 4
2002 290 : M B

Ao ﬂl%‘*gi}ﬂ’r At
<Fa) 2ol AFA0, A5

@), el V==

N

gt & F(Jong Ho Park) =] 9]
19971 291 : A “—nﬂfz};,l Yool | Al st Z9)
200041 3% ~&lx) : A Byt w7 e 2y A~ 3s))

i
<!

A ’\P-L’P’é
<FHA Wol e VES=, AaElEdl Ak
Aol
"4t = F(Ju Ho Park) 31

1997:d 281 : 4 “—tﬂfﬂrﬂ AR A} 2]
20000 39 ~&A) : Bt HAREAS} A}

I
<FH ok AAZE A2, G A, HFE)
Ef=
A Z Z(Kil To Chong) 3|9

198413 59 : ol Fald) 7)AlTeke =

198610 124 : ZAlo} T 7] AlEskah 414}

19923 1249 : Al A&M t3} 7] A3t upap

<FIA Hop AFE WESZ AN 2,
ApgAe]

1045

	Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing
	ABSTRACT
	Ⅰ.Introduction
	Ⅱ.Consistent hashing and load balancing
	Ⅲ.Network configuration
	Ⅳ.Simulation results
	Ⅴ.Conclusion
	References

