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Convolution Code and Low-Density-Parity-Check Code

Jun Heo* Regular Member
e o

Iterative decoding 2F372]32| optimality ol thgF w7 2-S- vjglo w2 53} ¥|°|Qli= sub-optimal decoding <Fil
2| &S WH3A AL, A8 7153 complexitydloll4] optimal Alsoll 7171 = oli= wiekS Alqksad et At
% A)#-$- 3Jel(Constrained)?] iterative decoding ©}372]3-S SCCC (Serial Concatenated Convolution Code) <}
LDPC(Low-Density Parity-Check) codeell #-8-A]A4], AA| & Abw]i= A3} complexity2] ARMHAIE vehls]
o, Tterative decoding®] aliA{ulu] o & Z|<tol| z}5} ®wh= Density Evolution 7|%-S 248 4vlstar, o5 24
3}o] CID(Constrained Iterative Decoding)o] ¥.oja== A%5o] skae- Adwsieldmch

ABSTRACT

A modification to the standard iterative decoding (message passing) algorithm that yields improved performance
at the cost of higher complexity is introduced. This modification is to run multiple iterative decoders, each with
a different constraint on a system variable (e.g., input value, state value, etc.). This Constrained Iterative
Decoding (CID) implements optimal MAP decoding for systems represented by single-cycle graphs (e.g.,
tail-biting convolutional codes). For more complex graphical models, the CID is suboptimal, but outperforms the
standard decoding algorithm because it negates the effects of some cycles in the model. In this paper, it is
shown that the CID outperforms the standard ID for a Serially Concatenated Convolution Code (SCCC) system
and Low-Density-Parity-Check (LDPC) code system, especially when the interleaver size is small.  Density
evolution analysis is used to show how CID improves the convergence relative to that of standard ID by

showing that the threshold of the CID is lower than that of the standard ID.

1. Introduction for a graph without cycles [1],[2],[3]. However,

the ID algorithms are suboptimal, because they

Since turbo codes were introduced, Iterative are developed ignoring the cycles of codes (e.g.,
Decoding (ID) has been researched to develop turbo codes, LDPC codes, SCCC etc). There have
effective algorithms which yield either better been several attempts to find an optimal decoding
performance or low complexity. These ID algorithm for a code with cycles. As a special
algorithms were understood as Belief Propagation case, the optimal decoding of a tail-biting code,
(BP) algorithms which were known to be optimal which has a single cycle, was investigated in
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[41,[5].

When all cycles are removed from a code, the
BP algorithm is optimal on the modified system.
As a method of removing the cycles, it is
proposed to put constraint on nodes (i.e., system
variables) of cycles. In other words, each
constraint of those nodes is represented by a set
of values and the BP algorithm is repeatedly
applied based on each constraint. This modified
ID algorithm is called as Constraint Iterative
Decoding (CID). The tail-biting code is a good
example of a single cycle code which is easily
cut by putting a constraint on the node (the
initial and final state variable). Therefore, CID is
optimal for the tail-biting code. As a example
with multiple cycles which are easily cut as well,
a 4-cycle tail-biting code is presented. This
example simply shows that an optimal decoding is
still possible when a code has more than one
cycle.

This CID algorithm can be applied to decode
more complex codes with many cycles, for
example turbo codes, LDPC codes, and SCCC
etc. Generally, optimal CID algorithms are not
possible for these codes because too many
constraints are required to cut all the cycles.
Although the CID is not optimal for these codes,
it outperforms the standard ID algorithm because
it negates the effects of some cycles in the
graphical representation of the codes.

Along with the development of ID algorithms,
analysis has been successful to unveil the
characteristics ~ of ID.  Particularly, recently
developed density evolution techniques have
achieved the asymptotic capacity of Turbo codes,
when the interleaver size and the number of
iteration go to infinity [6],[7]. This asymptotic
capacity was empirically obtained based on input-
output SNR evolution curves of each iterative
decoder. It was shown that the threshold
(capacity) is well matched to the region where
the bit error curves start to fall down [7]. Density
evolution was used to explain many mysteries of
turbo codes and SCCC in [8], for example, the

constituent codes etc. The method of SNR
evolution is based on the fact that the exchanged
soft information is well approximated by a
Gaussian random variable. In this paper, the CID
algorithms with multiple constraint marginalization
options are presented. A tail-biting code and
4-cycle tail-biting code are given as examples
where CID is optimal. The performance of CID
is compared to that of standard tail-biting ID [9].
For more complex codes like SCCC and LDPC
codes, it is shown that the suboptimal CID yields
better ~performance at the cost of larger
complexity. Because of the parallel structure of
CID, it could potentially achieve the standard 1D
performance with less latency (less interleaver
size). In addition, the density evolution technique
is used to show how CID improves the
convergence compared to that of standard ID.
Specifically, the SNR evolution curves of CID
shows lower threshold than that of standard ID.
The rest of this paper is organized as follows.
In Section 1I, the CID algorithm is developed as
either optimal or suboptimal decoding algorithm
depending on codes. Multiple constraint marginali-
zation methods are suggested as well. The
performance of CID for the optimal and
suboptimal cases are shown in Section III. The
simulation results show a tradeoff between the
complexity and the performance in CID. Some

concluding remarks are given in Section IV.

II. CID Algorithms

1.0ptimal CID Algorithms

When only a small number of nodes are shared
by all cycles of a code and each node has only a
small number of configurations, CID can be
optimal and feasible. For example, each node can
take two values and there are M nodes common
to all cycles, then the number of possible
constraints is 2%, with each constraint can be
represented by an Mx] vector. One simple
example is a tail-biting code which has only one

common node (start and end states: M=1) of a

Cn(gopnf/?‘ieg h%f ( é\)qt%ﬁ 3 li{‘fur?ﬂ?leﬁfg‘qi(fo Lﬁiﬂ\gle cycle and the number of condition values
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for the state variable is the number of configura-
tions for that node [4]. In Fig. 1, the concept of
state constrained decoding is illustrated for the
4-state non-tecursive convolution code.

There are two ways to perform constrained

marginalization:

Sum-marginalization[4]:
Hbp2d=2p(bpz| cIc)=2N bzl c)

Max-marginalization:

p( by, 2=maxp( by, z| c)p(c)=maxp( by, z| c))

where » and =z represent the information

sequence and noisy  observation  sequence,
respectively, and c¢,eC is a set of all possible
constraints. Given a constraint ¢;, p( b,,z| ¢;)
can be obtained by either a sum-product algorithm

or a min-sum algorithm as:

sum-product:
M bzl c)=2p&1 by, eI bylc)
min-sum:

P bzl c)=maxplz| by, c)p( bylc)

As an another example where CID is optimal, we
present a 4-cycle tail-biting code. The 4-cycle
tail-biting code consists of 4 data segments and
the first segment is exactly same as a standard
tail-biting code. After the first segment, the
tail-biting bits of the first segment are appended
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Fig. 1 The state constrained decoding on tail-biting code
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at the end of each data segment to have the
same starting and ending state.

This example shows that optimal decoding is
possible when a code has more than one cycle
and those cycles can be easily cut by constraints.
Fig.2 represents the data and tail bit arrangement
of both tail-biting and 4-cycle tail-biting codes. In
Fig.2, the shaded bits represent the tail-biting bits
repeatedly used in multiple data segments and the
capital letters A to B and A to E represent
the starting and ending state of each segment.

O

(a) (b)

Fig. 2 Data and tail bit arrangement with graph
(a)tail-biting code (b)4-cycle tail-biting code

2.Suboptimal CID Algorithms

When it is not possible to consider all
constraint values of all common nodes, a small
number of nodes can be selected and, for these
selected nodes, CID may be applied as a
suboptimal decoding algorithm. In other words, a
few of the many cycles are removed from the
graphical model of the code. For this suboptimal
CID algorithm, the constrained marginalization is
based on the selected constraints C instead of
all possible constraints C ( C C C). In addition
to the marginalization options (Sum, Max), two ad
hoc marginalization options for min-sum algorithm
are proposed:

Reliability-marginalization:
ci=argmax | p( b,=0,2| c)—p(b,=1,21| ¢, |
br=argmaxp( b,z | )
Sequence-marginalization:
ci=argmax | pz| b, c)p(b] ¢))

br=argmaxp( by, z| c))

The Reliability-marginalization method takes the
constraint which gives higher reliability at time
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index % while the Sequence-marginalization
method takes the constraint which gives highest
reliability for the whole sequence. In the
following section, the performance of two ad-hoc
methods are compared to that of the previous two
methods when CID is suboptimal.

Inner SISO [*—

(b) *— outersiso | jsomaq | T

0...00
0...01 | Constraints
generator

1.1

Fig. 3 Block diagrams of (a) the SCCC encoder, (b)
the associated CID decoder

The CID algorithm is applied to a Serially
Concatenated Convolutional Code (SCCC) and a
regular (3,6) LDPC code, which have many
cycles and nodes involved. At first, a small
number of nodes M out of all common nodes

M are selected. For the binary case, the number

of possible constraints is 2 ™. Secondly,
standard ID is executed for each of the 2 ¥
constraints. It should be noted that the constraints
are explicitly applied only for the first iteration,
however the soft information at subsequent
iterations still evolves based on the constraints.
After a fixed number of iterations (e.g, 10), the
soft information from each constrained decoding is
combined, and then marginalized to obtain the
decoded sequence. Fig. 3 shows the SCCC system
considered and the CID decoding blocks. Similar
CID algorithm was applied for (3,6) regular
LDPC code. The constraints were imposed on the
message from variable nodes to check nodes.

. Simulation and SNR evolution

In this section, the performance of CID is

copytight(&) 2805 NUHMedE C., Ltd.

the optimal tail-biting decodir:g, Fig. 4 shows the
performance of CID with the constraint on the
starting and ending state. The performance of
iterative tail-biting decoding was also shown with
two wraps (iterations) [9]. For comparison, the
performance of tail-bit decoding using Viterbi
Algorithm (VA) was also presented. All decoding
algorithms were based on min-sum algorithm with
the block size N=10.

Because the starting and ending state of the
tail-biting decoder can be determined correctly
with high probability at high SNR and the
tail-biting code saves the energy loss of tail-bits,
both tail-biting decoders outperformed the tail-bit
decoder at high SNR (i.e., the Eb/No reported
includes the penalty for tail-bits). However, at low
SNR, the probability of correct decision of the
starting and ending state is very low. Therefore,
the tail-bit decoder shows better performance
despite tail-bit energy loss. The optimal CID
performs  slightly better than the iterative
tail-biting decoding at all SNRs.

Fig. 5 shows the performance of the 4-cycle
tail-biting CID algorithm. The CID shows slightly
better performance than the tail-bit code at all
SNR. The 4-cycle structure increases the
probability of correct decision of starting and
ending state because of longer observation. At the
same time, the tail-bit energy loss is decreased.

This results in smaller performance difference.

0" T T T T T

—6— tail-bits, VA
10§ B —&— tail-biting, std ID
—&— tail-biting, CID

BER
3

Fig. 4 Performance of tail-biting and tail-bit convolu-
tional codes based on the min-sum algorithm with
the block size N=10
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Performance of the 4-cycle tail-biting codes based
on the min-sum algorithm with the block size N
=40

—— sequence

Eb/No

Fig. 6 Performance for SCCC based on min-spm
algorithm with the interleaver size 256. M =4
nodes were constrained.

TABLE |. The CID options of the SCCC decoder

SISO with constraints | M’ marginalization
Inner 4 Sum
Inner 4 Max
Inner 4 Sequence
Inner 4 Reliability

TABLEIl. The CID options of the LDPC decoder

options Q%ﬁi?ra‘fﬁ{g M* | marginalization

CID1 Check 2 Reliability

CID2 Check 4 Reliability
Copyright (C) 2003 NuriMedia Co., Ltd.
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24 3 36
Eb/No

Fig. 7 CID performance for SCCC2 (2-state inner code,
16-state outer code) based on MSM algorithm and

N=256, (a)CIDI: constrained at 2 nodes, (b)CID2:

constrained at 4 nodes. Both CIDl and CID2
used the Reliability-marginalization.
10 T T T T T
E E
—e—s4iD 3

—8— CID (2 node constrained)
—3®— CID (4 node constrained)

BER

EbNo

Fig. 8 CID performance of regular (3,6) LDPC code

based on MSM algorithm with interleaver size
500. (a)CIDI: constrained at 2 nodes, (b)CID2:
constrained at 4 nodes. Both CIDl and CID2
were constrained at check nodes with the
Reliability-marginalization.

Fig. 6 represents the performance of the CID
on the SCCC system in Fig. 3 with a small
N=256. Table 1
different CID options simulated. The constrains
are posed at the inner Soft-In-Soft-Out (SISO)
decoder. Because only some of the nodes were

interleaver size shows four

constrained,
CID was suboptimal and iteration improves
Both standard ID and CID were

simulated up to 10 iterations. With approximate

performance.

21 time higher complexity, CID shows about 0.4

dB gain at the 10 * BER. Among the CID
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options, the reliability-marginalization showed the TABLE Ill. Sample SNR evolution curves: actual(upper),

. ian(l
best performance. A tradeoff between complexity gunssianjone)

and performance of CID was observed. As the ’ .
number of nodes constrained increases, the i . Inner SISO,
performance is better. Fig.7 shows the tradeoff ‘ -
between complexity and performance of CID for
different SCCC system which has 2-state inner
code and 16-state outer code.

output SNR (innen , input SNR (outer)

The complexity and performance tradeoff in
CID was shown for regular (3,6) LDPC code in ) ‘ ,
Fig. 8. With the Reliability-marginalization, the o i i

CID showed about 0.3 dB gain compared to that inpult SN (ner) . output SNR (oter)
of standard ID.

IV. Convergence analysis of CID Eoo. ... imersiso. -

imejmact]

| Outer SISO

nut SNR (outer)
T

The density evolution techniques in the

literature can be classified into two categories.

output SNR (inn

One is the analytic density evolution, which is
mainly applicable to LDPC code [10]. The other

is the simulation based density evolution (referred

input SNR (inner), output SNR (outer)

to “SNR evolution” hereafter), which is usually
applicable to turbo codes and SCCC [6],[7],[8].
The SNR evolution in the literature can also be

12 77—

~©-- Std ID
—E—CID (N=4)

divided into two categories. One is actual SNR 11k

evolution and the other is gaussian SNR
evolution.

In Fig. 9 and Fig. 10, the block diagram of
these two SNR evolution technique are shown

respectively.
0.8

SNR in SNR out

26...[ | 15.. 07 :

“~ Outer SISO % Inner SISO [*— r ]
V1 37...| & | 04.. 06 L y P ) .
SNR out SNR in 0 0.2 0.4 06 08 1

input snr (outer) / output snr (inner)

output snr (outer) J input snr {inner)

Fig. 9 Block diagram of actual SNR evolution Fig. 11 SNR evolution curves of standard ID and CID on

SCCC at 0.53dB.

Gaussian random
number generator

The actual SNR evolution is calculated based
SNR in

ShiRjout on the collected LLRs at each iterative decoding

L —— Inner SISO *— step. From the collected LLRs, the mean ;. for

0.1.2.... e the exchanged soft information is computed. The
in
SNR out : < s
s SNR of a gaussian random variable with mean .
G i d iQ H M o o
siedisnrandon is approximated as 9 based on the symmetry

Cgﬁ);ﬁgmﬁf tlérj%ﬁ\gslﬁfjlﬁmét&ra CO., Ltd.ondition [11],[12]. In Fig. 9, the numbers
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indicate the order of actual SNR calculation.
Meanwhile, the gaussian SNR evolution uses a
generated soft information (LLRs) from a gaussian
random number generator, which is fed into each
constituent decoder. This idea is based on the
well-known gaussian nature of the extrinsic soft
information. As we can control the mean value of
generated LLRs with the gaussian SNR evolution,
the SNR curves and threshold can be calculated
with more precisely compared to those of the
actual SNR evolution. In Fig. 10, the numbers
and alphabets are shown to indicates the SNRs of
inner and outer SISO(Soft-In  Soft-Out) are
independent. Table III shows sample SNR
evolution curves for both actual(upper) and
gaussian(lower) cases.

For the convergence analysis of the CID
algorithm, the mean x was obtained from a
sufficient soft information block. Based on the
symmetry property [11], the variance of soft
information is 2x. With this mean and variance,
the SNR evolution curves were plotted. The SNR
evolution curves have a wider iteration tunnel as
the noise level decreases (i.e., as Eb/No increases)
A threshold of a certain decoding algorithm can
be obtained when the SNR curves start to touch
each other. Fig. 11 shows the SNR evolution
curves of the standard ID and CID algorithms. At
the threshold (Eb/No=0.53dB) of standard ID, the

e o

-9 --- Std ID (Eb/No=0.53dB)

1.1 F | —8— CID (Eb/No=0 48dB) 4

output snr (outer) f input snr (innery

06 L TR A T ! i)
0 02 04 0.6 08 1

input snr (outer) / output snr (inner)

Fig. 12 SNR evolution curves of standard ID and CID

CID SNR curves have an open iteration tunnel,
while the standard ID SNR curves are closed. In
other words, the threshold of CID is lower than
that of standard ID.

Fig. 12 shows that the standard ID and the
CID have their thresholds at different noise level,
Eb/No=0.48dB and Eb/No=0.53dB respectively.
The difference (0.5dB) between two thresholds
agrees with the difference of  simulation
performance (0.4dB at BER 10 %).

V. Conclusion

A modification of the standard iterative
decoding algorithm, CID, was introduced in this
paper. CID is the generalization of the idea that
optimal decoding of a tail-biting convolutional
code can be achieved by breaking the cycle using
a state variable constraint. The optimal and
suboptimal CID algorithm were presented and the
performance was compared that of the standard
ID. The suboptimal CID was applied to the
SCCC and LDPC codes, which have many cycles,
and it showed about 0.3-0.5 dB performance gain
with higher complexity compared to that of
standard ID. Convergence analysis using density
evolution techniques showed how the CID
improved the performance compared to that of
standard ID. Future work is to find a good, big
codes with a few cut-points, which is optimally
decoded by CID instead of standard ID
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