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ABSTRACT

This paper presents a novel radix-4 modular multiplication algorithm based on the sign estimation technique
[3]. The sign estimation technique detects the sign of a number represented in the form of a carry-sum pair. It
can be implemented with 5-bit carry look-ahead adder. The hardware speed of the cryptosystem is dependent on
the performance modular multiplication of large numbers. Our algorithm requires only (n/2+3) clock cycle for n
bit modulus in performing modular multiplication. Our algorithm out-performs existing algorithm in terms of
required clock cycles by a half. It is efficient for modular exponentiation with large modulus used in RSA
cryptosystem. Also, we use high-speed adder [7] instead of CPA (Carry Propagation Adder) for modular
multiplication hardware performance in final stage of CSA (Carry Save Adder) output. We apply RL
(Right-and-Left) binary method for modular exponentiation because the number of clock cycles required to
complete the modular exponentiation takes n cycles. Thus, One 1024-bit RSA operation can be done after
n(n/2+3) clock cycles.

I. Introduction

The data security will play a crucial role in
many future computer and communication systems
[1]. The fundamental security requirements include
confidentiality, authentication, data integrity, and
non-repudiation. To provide such security services,
most systems use public key cryptography.
Among the various public key cryptography

algorithms, RSA cryptosystem [2] is widely used
public key cryptosystem today. The main
objective of public key encryption is to provide
privacy or confidentiality.

In public key cryptography algorithms, the
essential arithmetic operation is modular multipli-
cation, which is used to calculate modular
exponentiation.

However, modular exponentiation on numbers
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of thousands of bits (1,024 bits or higher) makes
it difficult for the RSA algorithm to attain high
throughput. Also, public key encryption schemes
are typically substantially slower than symmetric
key encryption algorithm such as DES [13]. Fast
exponentiation is becoming increasingly important
with the widening use of encryption. Whereas the
most startling improvements in speed are achieved
through the wuse of dedicated hardware for
multiplication, some small gains can also be made
through a good choice of algorithm for organizing
the order of multiplications at the hardware level.

The previous works on modular multiplications
are as follows. The two systolic architectures is
presented to speed up the computation of modular
multiplication [14]. It is the main operation of
montgomery’s algorithm. The radix-4 modular
multiplication algorithm based on Montgomery’s
algorithm is presented [15]. This algorithm runs
four times faster than those based on original
montgomery algorithm. The montgomery algorithm
computes R=ABr'mod N [13]. The result R
involves an undesired factor ' (i.e. extra factor).
However, the montgomery algorithm has an extra
advantage.  The  correction  involves  some
precomputation based on the divisor and an extra
modular multiplication. Also, a precomputation
constant [1] should be calculated or stored to
remove the extra factor.

The sign estimation technique was used to
obtain fast algorithms for multi-operand modular
addition [4] and modular multiplication [3,5]
operations.  The improved sign  estimation
algorithm presented here correctly computes the
sign of the number when the number is large
enough in magnitude [6]. In this paper, improving
the modified Koc’s and Hung’s algorithm [3], we
propose a novel radix-4 modular multiplication
algorithm based on the sign estimation technique.
The radix-4 technique for multiplication is adopted
to reduce the number of clock cycles needed in a
1024-bit RSA operation. Our algorithm is fast in
computing large-bit addition and subtractions
without using carry propagation (i.e., with using

Carry Save Adder). Also our algorithm does not
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require  an  additional = computation as  in
montgomery multiplication algorithm. [1,12,14,15].
In the next section, we describe modular
multiplication based on sign estimation technique.
We propose a novel radix-4 modular multiplica-
tion algorithm. Next, in Section 3, we show how
to adopt modular exponentiation. In Section 4,
hardware realization of our high-speed radix-4
modular multiplier is presented. Finally, Section 5

draws a conclusion.

II. Modular Multiplication Algorithm

The RSA cryptosystem is the most widely used
in the public-key cryptosystem. It may be used
to provide both secrecy and digital signatures and
its security is based on the intractability of the
integer factorization problem.

In RSA, encrypt M into a ciphertext C by the

rule,
C=M° mod N

where M is the message such that 0 <M<N | e is
public key and the modulus N is a n-bit positive
integer. The decryption operation is performed
using the private key by computing

M=C* mod N

Both encryption and decryption are modular
exponentiation.  Therefore, the fast modular
exponentiation algorithm is required.  For most
hardware implementation, the simple square and
multiply algorithm, often called binary method, is
assumed to be the most effective because of the
simple hardware structure and repetitive control.
In the RL (Right-to-Left) binary method, n
iterations are needed and each iteration need two
modular multiplications. Also, these two modular
multiplication can be done in parallel by RL
(Right-to-Left) binary method. We reduced the
number of partial products by using radix-4
Booth’s algorithm for high performance, and
designed a radix-4 modular multiplier based on
Koc’s modular multiplication algorithm by using

sign estimation technique.
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1. Review of Sign Estimation Technique

The many existing redundant representations,
the carry save technique is rather inexpensive to
implement, and thus, widely used [6]. In carry
save adder, a partial sum(S) and carry(C)
sequence are generated in the intermediate stages
and the carry propagation occurs only at the last
stage. The sign of a number in one’s or two’s
complement representations is indicated by the
most significant bit. However, in the carry save
representation, the most significant bit (the sign
bit) is not readily available. In order to compute
the exact sign of the partial sum C+S, we have
to sum C and S in full precision. To solve this
problem, the sign estimation algorithm estimates
the sign of a number represented by a carry-sum
pair produced by a carry save adder [S].

The truncation function 7(X) is defined as the
operation which replaces the least significant t
bits of X with zeros, i.e. if X is an n bit number,

T(X)=X, X, , X, 0:--0

t zeros

n—-1

The parameter ¢ controls the cost and quality of
sign estimation. The following two inequalities
can easily be proven [3]:

T(X)SX<T(X)+2 )

T(S)+T(C)<S+C<T(S)+T(C)+2™ -

The following algorithm [3] is modular
multiplication algorithm by using sign estimation
technique. The modular multiplication problem is
defined as the computation of P=AB(mod N)
given the integer A, B and N. It is usually
assumed that A and B is positive integers with

0 <A,B<N.

Algorithm 1.

1.Set S”=0andC” =0M=-N

2. Repeat Step 2a, 2b, and 2c fori=1,2,3, -, n
2a.(C", ") =2AC" +5"")+ A, B
2. (C?, §7)=C" +8" +2M
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If T(C”) +T(S”) > O then set C” =C” and §” =S
2.(C°, 5" =C? + 5P +M
If T(C?) +T(S™) >0 then set C” =C” and §” =5"
3.(C", 87 =C" +8” +M
4. Compute P=C" +5” and P=C" +5"
5.If P>0then P=P
6. Return P.

In algorithm 1, C, S and P represent the

(i)

temporary values of c” s and P. It is used to
transform T to estimate the sign of C"”+$” using
the bits of the temporary carry and sum, starting

from bit location 7=n-1.

2. Radix-4 Modular Multiplication

For high-speed realization of modular exponen-
tiation, a novel radix-4 modular multiplication
algorithm is introduced. The algorithm is based on
a sign estimation technique that estimates the sign
of a number represented by a carry-sum pair
produced by a carry save adder. By using radix-4
numbers for modular multiplication and modular
reduction, the number of iteration can be reduced
by half. The modulus N is n-bit number, which is
equivalent to the number of partial products. Our
algorithm reduces the number of operations and
requires n/2+3 iterations. Booth encoding is also
used to our algorithm.

The following algorithm computes P=AB(mod
N). In order to apply the Booth algorithm in
performing the modular multiplication operations,
let A be n+3 bit and B be n+l bit 2’s
complement numbers and N is an n-bit odd
integer, where -N <A,B<N. Also, let
BPi=Apoon encoding™B = (BPi, BP.j, --3BP1, BP)
where 0<i<n/2+1 .

Algorithm2. RAMM(A B, N)
1.Set $”=0andC” =0

. n
2fori=1to ;+2

(C”.S”):‘KC’AU +S(:-I|)+BE
If T(C")+7(5") 20 then
(an.gul):cn_‘_sn_z/\/
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¥ TNC") +T(5”)=0then " =C” and §® =5*
(€, 8" =C"+8"-2N
If 7(C")+7(S”) 20then € =C" and S =5
end
end
(€, 8% =C"+§"-N
If 7(C") +7(5") >0then " =C" and §* =5
end
else
(€, 8" =C"+S"+N
If 7(C") +T(S”) <O then
(,5)=C"+S°+N
end
end
3.(C°, 8§ =C"+S"-N
4 Compute P=C" +8” and P=C" +§"
5.1f P>0then P=P
6.Retum P,

In order to utilize the carry save adders in
performing the modular multiplication operations,
we present the numbers as the carry save pairs
(C, S), where the value of the number is the sum
C+S. The carry-save adder is used to subtract N
or 2N from C”+$”. The modulus is represented
in 2's complement form. Thus, subtraction
operation of algorithm 2 performs addition.
7(Cc”)+1(8") >0
after K subtraction. If we perform one more
7(C")+T(S")<0, then
T(C")+T(s")<-2', because it must be a multiple
of 2. There, after K subtraction, we have 0<
T(C”)+1(s")<N-2"  [3].

Equation (2) can be re-written as

Assuming that we obtain

subtraction and obtain

0<C"+8"<N+2 (3)
In the next step, we compute C'" and S™".
Because (C'"", s“") 4C"+8") + AniiB,
this gives,

0<C"P+85"" <4N+2)+N=5N+2"" (4

If we perform five subtraction (K=5), then c™+
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S“Y will be less than 2'°. To satisfy the
requirement of equation (3), we select t+2=n. We
found that sign estimation parameter (1) is 1=n-2.
Booth encoding is applied to A,.;B.

The modular reduction procedure in step 2 of
algorithm 2 as described above subtracts N from
Instead of
subtracting N five times, 2N, 2N and N are

(C, S) in each of the 5 iterations.

subtracted, respectively. After step 3 and step 4,
the number of modular operations is reduced in
the range /0, N). In step 4, high-speed adder [7]
is used because it is one of the most critical parts
affecting the hardware performance of modular
multiplication. The sign estimation procedure
checks 5 most significant bits of ¢ “and S
from the bit locations n-/ to n+3. The procedure

is implemented with a 5-bit carry look adder.

. Modular Exponentiation Algorithm

The encryption process of the RSA is
performed mainly by the modular exponentiation.
The decryption can be done in the same way. A
simply way to perform modular exponentiation is
to repeat modular squaring and  modular
multiplication. The binary method for computing
modular  exponentiation has  two  variations
depending on the direction by which the bits of
Left-to-Right (LR) and
Right-and-Left (RL). The LR binary method

requires 2n clock cycles. The RL binary method

exponent are scanned

requires n clock cycles [8]. We apply RL binary
method by adopting radix-4 modular multiplication
to modular exponentiation. The following RL
binary method algorithm computes C=M‘ mod N.
Here we assume e is represented by an h-bit

binary number (ex; en2 -+ e; eo).

ME(M,e,N)
1. C =1
2fori=0to h—-2
if ¢, =1then R&AMM (C,M,N)
M = R4AMM (M .M ,N)
if ¢, =1then C = R4AMM (C,M.N)

3. return C
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Each cycle of the loop potentially requires two
modular multiplications, which may be executed in
parallel. Also, the computing time is reduced to
which is independent on the number of 1-bits in e.

IV. Hardware Implementation

Fig. 1| shows the overall architecture of a
1,024-bit RSA processor. Our design executes two
radix-4 modular multiplications simultaneously.
The number of clock cycles required to complete
the modular exponentiation is n cycles.

Based on the presented modular multiplication
algorithm,  modular  exponentiation can  be
accomplished by implementing three block : 1)
the controller block, 2) register block and 3) the
multiplication block. The controller block controls
all input and outputs of the multiplication block.
The register block stores parameters through a
32-bit input buffer to perform modular exponen-
tiation. The multiplication block is described as
below. The modular multiplication architecture is
also given in Fig. 2.

In hardware implementation every step in
radix-4  modular  multiplication  algorithm s
designed by four-level CSA. The CSA block
performs modular reduction operations through the
three-level CSA or four-level CSA (shown in loop
part of algorithm 2). The controllerl controls
carry, sum and modulus (-N, -2N or N) for CSA
operation and also all inputs for high-speed adder.
In the design of a high-speed adder [7], we

employed a combination of carry-skip and carry-

> ) |
M > Wodiis Radix-4 (\?odul;xr
Multiplication
& Register
-] chl.\!
N Host > o
interface Exponent J Radix-4 Modular
i B Register Multiplication
l M¢mod N
< Message 1 '
—» . -
Register Controller I

Fig. 1 Architecture of the 1,024-bit RSA processor
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Klb{ Controller |

W

High-
speed
adder

AB
mod ﬁ

High-
speed
adder

Fig. 2 The radix-4 modular multiplication block.

select techniques. Fig. 3 shows the basic structure
of the adder. This adder performs 46.5ns delay
for 1028 bit operation. Therefore, instead of carry
propagation adder in step 4 of algorithm 2, we
use high-speed adder to improve modular
multiplication. The booth recoding rules for booth
encoding block applied are shown in table 1 [9].

Table 1. Radix-4 Booth’s recoding rules.

A, Ao Aug Rec.oc.ied Operation on
digit B

0 0 0 0 0B

0 0 1 +1 +1B
0 1 0 +1 +1B
0 1 1 +2 +2B

1 0 0 -2 -2B

1 0 1 -1 -B

1 1 0 -1 -B

1 1 1 0 0B

B Pi

P
Full Adder Cell

Block 0 Block | Block 2 Block 3
Fig. 3 High-speed adder
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The total number of clock cycles required to
complete the modular multiplication is (n/2+3)
cycles to perform the desired operations. The loop
part of algorithm 2 takes (n/2+1) cycles. The
high-speed adder block performs only 2 clock
cycles at 40MHz. One 1024-bit RSA operation
can be done after n(n/2+3) clock cycles. As a
result, the total operation time is 13ms at 40MHz.
Table 2 shows a comparison of some RSA
processor. We compare the operating time and
clock frequency of I.C. in consumer electronic. It
can be seen that our design has the shortest

operating time.

Table 2. A comparison of some RSA processor

ITEM PIINENBURG Our
10 .
Circuit IBM [10] [11] design
L 33 MHz 25 MHz 40MHz
frequency
Crypto core +
— 10K gate Unknown 230k
counts :
logic
L e 1024 1024 1024
bits
Operating 32ms 48ms 13ms
time

V. Conclusions

In this paper, we presented a novel hardware
realization of a 1024-bit RSA processor. The
proposed a novel radix-4 modular multiplication
algorithm is based on sign estimation technique
and improves existing modular multiplication
algorithms significantly. The carry look-ahead
logic is also used to detect the sign of the partial
product during the CSA process. To complete the
modular multiplication for desired operations, the
number of clock cycles required is only (n/2+3).
The proposed algorithm is implemented and
further reduced computational time for modular
multiplication. The total number of gate was
increased due to the additional one-level CSA and
control part. However, our algorithm does not
require an extra factor as in Montgomery
Furthermore,

multiplication algorithm [12].

Copyright (C) 2003 NuriMedia Co., Ltd.

precomputation constant [1] is not required in our
algorithm. The baud rate of RSA operation is
78.8kbits/s. The hardware evaluation demonstrated
the efficiency of our algorithm and our algorithm
can be effectively applied to the high-speed RSA
cryptosystems.
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