
논문 06-31-4B-04 한국통신학회논문지 '06-4 Vol.31 No.4B

285

웹티어 오브젝트 모델링을 통한 non-SQL

데이터 서버 프레임웍 구현

정회원 권 기 현*, 천 상 호**, 최 형 진**

Implementation of Non-SQL Data Server Framework

Applying Web Tier Object Modeling

Ki-hyeon Kwon*, Sang-ho Cheon**, Hyung-jin Choi** Regular Members

요 약

엔터프라이즈 애플리케이션 개발을 위한 분산 아키텍처를 개발할 때는 여러 고려 사항 중에서 계층(tier)의 응

집력(cohesion)을 높이고 계층간 연결 결합력(coupling)을 낮추기 위해 페이지 작성자와 소프트웨어 개발자의 역할

을 명확히 분리하는 것과 비즈니스 로직의 단위가 되는 엔터티(entity)를 정의하고 데이터베이스 연결과 트랜잭션

처리에 엔터티의 사용 및 역할에 대해 정의하는 것이 우선적으로 필요하다. 이 논문에서는 DONSL(Data Server

of Non SQL query) 아키텍처를 제시하여 이러한 문제점을 해결하고자 한다. 이 아키텍처는 웹 티어 오브젝트 모

델링 방법을 사용하며 계층(tier)간의 결합도를 낮추고, 데이터베이스 연결에 반드시 사용되는 DAO(Data Access

Object)와 엔터티를 효과적으로 분리하여 이러한 문제점을 해결 한다. 핵심 내용으로 DAO에서 엔터티 객체를 제

거하는 방안을 통해 DAO 개발을 용이하게 하는 방법과 SQL 질의 자동 생성을 통해 트랜잭션 처리 자동화 방법,

그리고 트랜잭션 처리시 AET(Automated Executed Transaction)와 MET(Manual Executed Transaction)를 효율적

으로 운용하는 방법에 대해 제시하고 시스템을 구현하였다.

Key Words：data access object, non-sql data server, AET(Automatic Executed Transaction)

ABSTRACT

Various aspects should be taken into account while developing a distributed architecture based on a multi-tier

model or an enterprise architecture. Among those, the separation of role between page designer and page

developer, defining entity which is used for database connection and transaction processing are very much

important. In this paper, we presented DONSL(Data Server of Non SQL query) architecture to solve these

problems applying web tier object modelling. This architecture solves the above problems by simplifying tiers

coupling and removing DAO(Data Access Object) and entity from programming logic. We concentrate upon

these three parts. One is about how to develop the DAO not concerning the entity modification, another is

automatic transaction processing technique including SQL generation and the other is how to use the

AET/MET(Automated/Manual Executed Transaction) effectively.

 * 강원대학교 전자정보통신공학부 정보통신공학전공 (kweon@kangwon.ac.kr),

** 강원대학교 IT특성화학부(대학) 컴퓨터과학전공 (shcheon61@empal.com, choihj@kangwon.ac.kr)

 논문번호：KICS2005-10-405, 접수일자：2005년 10월 13일, 최종논문접수일자 : 2006년 3월 15일

www.dbpia.co.kr

한국통신학회논문지 '06-4 Vol.31 No.4B

286

Ⅰ. Introduction

There is significant increase in the researches

relating application of framework and pattern on

any system. in distributed environment[1-3]. The

need to apply framework and pattern to any sys-

tem development is for maximizing the interoper-

ability, extensibility and reusability of the web ap-

plication
[4]. To maximize the reusability and to

satisfy the interoperability, it is necessary to meet

following conditions: First, the separation of role

between page designer and page developer should

be done. Second, the entity should be made com-

mon within the system. Third, the SQL query ob-

ject that is needed to connect database must be

created automatically. Fourth, transaction can be

automatically processed by agent.

This paper is organized as follows. Section II

presents MVC framework and object modeling.

Section III describes non-SQL concept. Section IV

presents DONSL transaction processing using

agent. Section V discusses DONSL architecture

based on MVC model, while section VI describes

the implementation of DONSL architecture and its

performance evaluation. The conclusion is in sec-

tion VII.

Ⅱ. MVC Framework and Object Modeling

2.1 MVC Framework

MVC framework minimizes the alteration ef-

fects due to change in logic
[5,6]. In distributed sys-

tem, model is expressed in terms of entity and

used for handling data
[7]. Since entity related

items must be modified whenever it needs modi-

fication. There is the problem to implement sepa-

rately the presentation entity and DBMS entity

which tighten the coupling between tiers. Since

SQL query is always dependent on the database,

DAO entity needs to be considered equally. The

changes in SQL query logic or entity or database

affects all related tiers.

2.2 Object Modeling

Object modeling based on MVC framework ap-

plies MVC concept to web-tier in web application

server (WAS). It simplifies the modeling and makes

WAS-tier transaction processing automatic. The en-

tity can remove tight coupling problem among

tiers through common API.

Ⅲ. Non SQL Concept

In non-SQL concept, a developer should not

include SQL query logic in DAO though the

common method to access any database is

through DAO.

List 1. An Example of DAO

5 List getEmployeeList(String empno, name){

...

12 Statement stmt = con.createStatement();

13 String query=“SELECT empno, name, address

FROM EMP”;

14 query += “where empno = ” + empno + “”;

15 query += “and name like '%” + name +

“%'”;

16 ResultSet rs = stmt.executeQuery(query)

17 }

The lines 13-15 in List 1 can be expressed in

many different ways. If non-SQL concept is ap-

plied, we can remove these kinds of SQL query

from DAO so that we don't need to reconfigure

server whenever the query is reconstructed.

In the List 2, those SQL lines are replaced by

single line i.e. function queryGenerator(). The de-

veloper only needs to write queryGenerator (param)

function.

List 2. Removal of SQL Query.

1 public List getEmployeeList(Hashtable param){

2 Statement stmt = con.createStatement();

3

4 String query = queryGenerator(param);

5

6 ResultSet rs = stmt.executeQuery(query);

7 }

If the SQL query is “select empno, name, ad-

www.dbpia.co.kr

논문 / 웹티어 오브젝트 모델링을 통한 non-SQL 데이터 서버 프레임웍 구현

287

dress from EMP where empno=‘1111' and name=

‘Kwon', it can also be expressed in following

ways:

(1) “select empno, name, address from EMP”

(2) “select empno, name, address from EMP

where name=‘Kwon'”

(3) “select empno, name, address from EMP

where empno=‘1111' and name=‘Kwon'”

etc.

The above sample query can be divided into

“select empno, name, address from EMP where

1=1”, “and empno=111”, “and name=Kwon”. If

the value of empno or name is null, then “and

empno=‘111'” or “and name=‘Kwon'” needs to be

removed.

Let's suppose, the SQL query is split and

saved into XML as in List 3. ‘?' represents the

part where parameter will be included. The order

of ‘?' in 2, 3 lines and of 5, 6 lines must match.

When SQL query is executed taking parame-

ters(EMPNO, NAME), the automatic SQL query

logic analyzes according to line and ‘?' and

makes ready the next execution. After analyzing

both parameters, it checks whether EMPNO pa-

rameter is NULL or not. If it is, it deletes line

2, similarly in the case of NAME too.

List 3. Generation of SQL query by Admin Tool.

1 <D-QUERY>select empno, name, address from

EMP where 1=1

2 and empno=‘?'

3 and name=‘?'

4 </D-QUERY>

5 <D-INPARAM NO=“1” TYPE=“String”>

EMPNO</D-INPARAM>

6 <D-INPARAM NO=“2” TYPE=“String”>

NAME</D-INPARAM>

As in List 4, many SQL queries can be in-

cluded into one transaction. DONSL container cre-

ates one transaction instance after analyzing the

settings, and creates three SQL encapsulated in-

stances for including in the transaction.

List 4. XML Setting of Transaction

1 <D-TX GNAME=“bbs” NAME=“DeleteBBS_TX”

TYPE=“required”>

2 <D-AGENT>com.nosco.bbs.agent.BbsAgent

</D-Agent>

3 <D-WORK TYPE=“D-SQL”>selectEtcOwner

BBSSQL</D-WORK>

4 <D-WORK TYPE=“D-SQL”>deleteBBSSQL

</D-WORK>

5 <D-WORKTYPE=“D-SQL”>selectDeleteStepSQL

</D-WORK>

6 <COMMENT>Delete the article of BBS

</COMMENT>

7 </D-TX>

The transaction management is done according

to AET (Automatic Executed Transaction) and

MET(Manual Executed Transaction) which are ex-

plained in detail in the next section. AET is used

in DONSL by default. But, we used MET in this

case. In List 4, there are three SQL queries and

brings problem which to be executed first. MET

is used to solve this problem which uses the re-

sult of first SQL as parameter to the second and

similarly the third gets from second.

Ⅳ. DOSNL Transaction Processing

using Agent

DONSL uses automatic managed transaction(AMT)

where AMT manages automatically all the con-

tents set in XML. The execution of transaction is

done in two ways : AET(Automatic Execution Tran-

saction) and MET(Manual Execution Transaction).

4.1 Automatic Agent Deployment

We suppose that DONSL server acts from re-

mote for any web server. The programming is

done in web server and the developed agent auto-

matically moves to DONSL server. Since this de-

ployment keeps inspection on changing of agent,

it is effective to use only during project develop-

ment but not after completion.

www.dbpia.co.kr

한국통신학회논문지 '06-4 Vol.31 No.4B

288

그림 1. AET와 MET 처리흐름
Fig. 1. Workflow of AET and MET

4.2 Manual Agent Deployment

The main difference is that it uses web admin

tool provided by DONSL server to upload agent

class. It becomes a problem if agents are more

than normal. It is more effective after the project

completion and can also reduce overload due to

agent.

Ⅴ. MVC Model based DONSL architecture

5.1 DONSL Architecture

As in Fig. 2, DONSL architecture has web tier,

WAS-tiered DONSL container and database. Web

tier applies MVC concept and uses IResult entity

as model, WorkerBean as view, and Controller

and Agent as controller. The DONSL container

connects an agent in the object pool and the agent

executes the automatic SQL query, and provides

communication among each tier on XML basis. In

this architecture, the page designer and software

developer develop JSP part but software developer

alone develops WorkerBean, Controller, Agent,

DONSL container and SQL properties(XML).

그림 2. DONSL 아키텍처
Fig. 2. DONSL Architecture

5.2 Advantages of DONSL

The advantages of DONSL architecture are as

follows:

First, one side object modeling becomes possi-

ble in distributed environment and it shortens de-

veloping time making transaction processing sim-

ple and error modification easy by convert-

ing(DAO class remove) SQL-query logics into

SQL-properties. Second, error modification time

can be shortened by including object transmission

among tiers into XML properties(Entity class re-

move). Third, it also supports distributed trans-

action and has advantages like performance max-

imization, WAS-tier development in low cost, low

maintenance cost.

Ⅵ. Implementation & Performance Evaluation

6.1 Prototype Implementation

DONSL prototype can be divided into two parts,

DONSL container and DONSL client. DONSL con-

tainer consists of 4 kinds of packages. They are

Connector package, Transaction package, Classloader

package and Pool package. Transaction package

being the core part of DONSL architecture man-

ages the creation and processing of transaction.

TxManager handles starting and ending of all

unit transaction as shown in Fig. 3. TxProcessor

encapsulates the transaction setting details of

DONSL administration tool item-wise. It passes

UserTransaction to the agent, and calls the agent's

execution method. DefaultDonslAgent is im-

plemented executing WorkUnit.

The relation between UserTransaction and

WorkUnit is one to many i.e. many jobs can be

run in one transaction. It should be noticed from

그림 3. 트랜잭션 처리를 위한 클래스 다이어그램
Fig. 3. Class Diagram of Transaction Processing

www.dbpia.co.kr

논문 / 웹티어 오브젝트 모델링을 통한 non-SQL 데이터 서버 프레임웍 구현

289

Fig. 3 that the TxProcessor, DefaultDonslAgent,

UserTransaction, WorkUnit commonly get in-

heritance from IObject. And, connector package

was designed using servlet which can execute

DONSL container from any servlet container.

6.2 Prototype Usage Procedure

The followings are the setting procedure of

DONSL admin tool:

First, transaction list is registered executing

transaction menu at first which is made on the

basis of all required transactions. Unique trans-

action name and comment should be given, and

details can be added any time later. Similary, da-

tabase and SQL details are enlisted. Then, unit

transaction details are set. When the execution

method of transaction SQL list is not simple, the

developer defined agent must be implemented. At

this time, transaction details can be changed after

setting necessary agents from agent menu. The

agent programming code can be uploaded directly

or after compiling. In this way, DONSL server

settings are completed. Only client programming

is now required which can be done almost similar

way as general JDBC programming. The follow-

ing is the source code for accessing DONSL

server from client(List 5):

List 5. Client Source Code

DSURL url = new DSURL(“donsl:/test@local-

host:8888:ds/Donsl”);

DSConnection conn =DSConnectionFactory.getDS

Connection(url, null);

ParameterString[] paramNames = { “COFFEE_

NAME” }

NameString[] paramValues = { “java” };

DSStatement stmt = conn.createStatement();

stmt.setParams(paramNames, paramValues);

NameString txName = “Test1_TX”;

stmt.execute(txName);

IResultSetHouse house = stmt.getResultSetHouse();

IResultSet result=house.getResultSet(0);

while(result.next()){

System.out.println(result.getString(”COFFEE_NA

ME ”));

}

6.3 Performance Evaluation

Performance evaluation was done comparing

with J2EE platform Java PetStore
[8] application.

DONSL simply changed Java PetStore application

into DONSL server accessible format. For making

overload used in the test reasonable, the following

settings are done in the Microsoft Web Applicati-

on Stress Tool
[9].

- Warm up Time: 1 minute

- Measurement Time: 5 minute

- Think Time: 5~35 seconds(avg. 20 sec)

TTFB(Time to First Byte) : The time between

sending request and getting first 1 byte response.

TTLB(Time to Last Byte) : The time between

sending request and getting whole response.

For the best results, the actual test was done

taking measurements after passing warm up time(1

min.) and each user's think time(5~35 sec.). After

setting hardware and overload percentage properly,

the test was done generating requests from more

than 50 virtual users till occurrence of Socket

Error or Internal Server Error(HTTP Error code

500). The result was obtained as in Fig. 4.

Having analyzing the above graph we proved that

the DONSL server yields 5 times good perform-

ance when the users are 50. When more than 50

there is more significant difference. In case of

0

5000

10000

15000

20000

25000

50 100 150 200 250 300 350 400 450 500 550 600 650 700

DONSL TTFB

DONSL TTLB

EJB TTFB

EJB TTLB

T
im

e
(m

s
)

Users

EJB TTLB

EJB TTFB

DONSL TTLB/TTFB

그림 4. DONSL과 EJB 응답시간 비교
Fig. 4. Comparison Graph of Response Time

www.dbpia.co.kr

한국통신학회논문지 '06-4 Vol.31 No.4B

290

J2EE environment, the measurement was not pos-

sible due to the occurrence of Socket Error when

there are more than 250 users.

Ⅶ. Conclusion

In this paper, we have presented DONSL archi-

tecture which separates business logic and pre-

sentation logic using non-SQL data server frame-

work. It also improves the productivity of com-

plex web application and uses agent technology,

supports distributed transaction. It removes SQL

query from business logic and handles those quer-

ies by XML. Hence, it offers many advantages

over traditional approach to web application devel-

opment that relies solely on MVC model. Though

DONSL architecture provided much relief to the

enterprises who were looking for the solution to

increasing complex web application, there is still

a lot to do in order to improve broad acceptance,

compatibility and standardization.

REFERENCES

[1] D. Schwabed, G. Rossidd, “An object-oriented

approach to web-based application desing”,

Theory and Practice of Object Systems

(TAPOS), 4, 1998.

[2] R. Johnson, “Frameworks = Patterns+ Compo-

nents”, Communication of ACM, 40, 1997.

[3] F. Bushchmann, R. Meunier, H. Rohnert, P.

Sommerland, and M. Stal, “Pattern-Oriented

Software Architecture : A System of Patterns”,

Willey and Sons, 1996.

[4] D. C. Schmidt, “Experience using Design

Patterns to Develop Reusable Object-Oriented

Communication Software”, Communication of

ACM, 38, 1995.

[5] M. Jacyntho, D. Schwabe, G. Rossi, “A

Software Architecture for Structuring Complex

Web Applications”, Int. WWW conference, 2002.

[6] K. Iijima, J. Ivins, “An Alternate Three-

Tiered Architecture for Improving Interope-

rability for Software Components”, Int. WWW

Conference, 2003.

[7] S. H. Cheon, K. H. Kwon, H. J. Choi,

“Developing an Automatic Components

Creating System in Distributed Environment”,

Korea Digital contents, 2, 2001.

[8] Sun Java Software, “Java Pet Store”, http://

java.sun.com/reference/blueprints/, 2004.

[9] Microsoft Software, “Web Application Stress

Tool”, http://www.bridgeport. edu/sed/projects/

cs597/Fall_2002/jishah/web_application_

stress.htm, 2002.

[10] B. Goetz, “Java Theory and Practice : State

Replication in the Web Tier”, http://www-

128.ibm.com/developerworks/java/library/j-

jtp07294.html, 2004.

[11] 허미영, 이종화, 김용진, 진병문, “사이버교육

을 위한 기반구조 시스템의 설계”, 한국통신

학회논문지, 24(12B), pp.2225-2232, 1999.

권 기 현 (Ki-hyeon Kwon) 정회원

1993년 2월　강원대학교 전자계

산학과 졸업

1995년 2월　전자계산학과 이학

석사

2000년 8월　컴퓨터과학과 이학

박사

2002년~현재　강원대학교 전자정

보통신공학부 정보통신공학전

공 조교수

<관심분야> 미들웨어, 임베디드시스템, 패턴인식

천 상 호 (Sang-ho Cheon) 정회원

1986년 2월　서강대학교 수학과

졸업

2002년 2월　컴퓨터과학과 이학

석사

2005년 2월　강원대학교 컴퓨터

과학과 이학박사

1985년~1989년　한국화약 전산실

1989년~1997년　(주)선경유통

1997년~현재　(주)오픈시스템서비스 대표이사

<관심분야> 컴포넌트시스템, 분산시스템, 미들웨어

최 형 진 (Hyung-jin Choi) 정회원

1982년 2월　영남대학교 물리학

과 졸업

1987년 2월　일본동경 공업대학

정보공학과 공학석사

1990년 2월　공업대학 정보공학

과 공학박사

1990년~1991년　ETRI선임연구원

1991년　현재 강원대학교 전자계

산학과 교수

<관심분야> 인공지능, 화상처리, 패턴인식, 컴퓨터그래픽

www.dbpia.co.kr

	웹티어 오브젝트 모델링을 통한 non-SQL 데이터 서버 프레임웍 구현
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. MVC Framework and Object Modeling
	Ⅲ. Non SQL Concept
	Ⅳ. DOSNL Transaction Processing using Agent
	Ⅴ. MVC Model based DONSL architecture
	Ⅵ. Implementation & Performance Evaluation
	Ⅶ. Conclusion
	REFERENCES
	저자소개

