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Density Evolution with a Gaussian Approximation

Song-Nam Hong*  Associate Member,  Dong-Joon Shin**°  Lifelong Member

ABSTRACT

Capacity-approaching codes using iterative decoding have been the main subject of research activities during 

past decade. Especially, LDPC codes show the best asymptotic performance and density evolution has been 

used as a powerful technique to analyze and design good LDPC codes. In this paper, we apply density 

evolution with a Gaussian approximation to the concatenated zigzag (CZZ) codes by considering both flooding 

and two-way schedulings. Based on this density evolution analysis, the threshold values are computed for 

various CZZ codes and the optimal structure of CZZ codes for various code rates are obtained. Also, 

simulation results are provided to confirm the analytical results.
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Ⅰ. Introduction 

Low-density parity-check (LDPC) codes were 

introduced by Gallager[1] and rediscovered by Mackay 

and Neal[2]. Richardson, Shokrollahi and Urbanke[3] 

showed that irregular LDPC codes could have better 

performance on the AWGN channel than turbo codes, 

which was nearly close to the Shannon limit. However, 

the encoding complexity of LDPC codes is quadratic 

in the block length, which results in slow encoding. 

Therefore, efficient encoding algorithm has been 

studied
[4] and various fast encodable codes such as 

irregular repeat accumulate (IRA) codes, concatenated 

tree (CT) codes and concatenated zigzag (CZZ) codes 

were proposed
[5-7].

CZZ codes were proposed by Ping[7], which use 

zigzag codes having simple tree structure without cycle. 

The error correcting capability of zigzag code is very 

weak but it is very useful as a component code to 

construct concatenated codes. CZZ codes have lower 

decoding complexity than turbo codes, faster 

convergence speed than LDPC codes due to the 

two-way scheduling. Also, they are linear-time 

encodable.

We denote a CZZ code having Nc zigzag codes 

and dc check node degree by (Nc, dc)-CZZ code. The 

overall code rate is (dc–2)/(dc–2 +Nc) and more 

detailed structure can be found in 
[7]. For a fixed code 

rate, CZZ code can have various structures by changing 

the number of zigzag codes Nc and the corresponding 

check node degree dc. Therefore, it is important to 

find the optimal (Nc, dc)-CZZ code for a given code 

rate. In this paper, the density evolution analysis of 

CZZ codes considering two-way scheduling is 

performed and compared with that for flooding 

scheduling. Based on density evolution analysis, we 

confirm that the performance does not depend on the 

scheduling. The threshold values are computed for 

various CZZ codes and the optimal CZZ codes for 

various code rates are obtained.

Ⅱ. Analysis of CZZ Codes Using 

Density Evolution with a Gaussian 

Approximation

Richardson and Urbanke demonstrated that the 
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average asymptotic behavior of LDPC decoder 

using sum-product algorithm could be numerically 

estimated by using an algorithm called density 

evolution
[9]. Chung, Richardson, and Urbanke have 

shown that the messages passed in the 

sum-product decoding on the AWGN channel can 

be well approximated by Gaussian random 

variables
[10], that allows us to easily understand the 

behavior of the decoder. In this section, we apply 

density evolution with a Gaussian approximation to 

see the average asymptotic behavior of (Nc, 

dc)-CZZ decoder using sum-product algorithm on 

two-way scheduling. In this case, the messages 

sent on edges represent a posteriori densities on 

the bit associated with the incident variable node 

and it can be compactly represented by 

log-likelihood ratio (LLR). These LLR messages 

are updated at each iteration in the sum-product 

decoding
[9]. For the simplicity of analysis, it is 

assumed that all-0 codeword is transmitted[9]. 

L

L

L L

jp 1+jp
1−jp

jc 1+jc

( )a ( )b

( )c ( )dL

LZigzag decoder1 

Zigzag decoder2 Zigzag decoder3 

Fig.1. Message flows in CZZ decoder using two-way 
scheduling when Nc=3.

From now on, we will derive the recursion 

equations for various (Nc, dc)-CZZ codes with 

two-way scheduling. Let 0um be the mean of 

message from the channel at variable node and 

Nch is the number of check nodes in each zigzag 

code. Then, 

   since all-0 codeword is 

transmitted. If two information nodes are connected 

to the same check node, the means of messages 

from information nodes to the check node are the 

same. Therefore, we do not distinguish the 

information nodes connected to the same check 

node and only consider Nch information nodes. 

We assume that the zigzag interleaver randomizes 

the information bits perfectly and the number of 

information bits is sufficiently large. The density 

evolution analysis for two-way scheduling is done 

by two levels considering messages passed 

between zigzag decoders and messages passed in 

each zigzag decoder. 

First, we consider the messages passed between 

zigzag decoders.      and       denote the 

means of messages from the jth check node of 

the kth zigzag decoder to information node at the 

lth iteration and vice versa.       and       

are corresponding to (a) and (b) in Fig. 1, 

respectively. Let     be the message from 

randomly selected check node to information 

node. Then, the probability of           is 

equal to   for all j. Therefore,      has the 

following Gaussian mixture probability density 

    
 .

   
  



 



    
    

where     
  means the Gaussian probability 

density function with mean       and variance 


     . The message    by

     
  ≠



       

     is the sum of      which can be 

assumed Gaussian since      has the almost 

same mean value for all j. Therefore,     is 

well approximated by Gaussian random variable 

and only the mean and variance are needed, 

which can be calculated as follows.

       
  ≠



   

    

  


 



  
 

   

where n is fixed by 1 since     does not 

depend on n.

L
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          

  


 




  
 

   

Since v (l+1,k) also satisfies the symmetry 

condition[3], we only need to track the mean. 

Second, we consider the messages passed in 

each zigzag decoder. We denote the means of 

messages from the jth check node (cj in Fig. 1) 

to the left-parity node (pj-1 in Fig. 1) and the 

right-parity node (pj in Fig. 1) at the lth iteration 

by      and    , respectively. These are 

corresponding to (c) and (d) in Fig. 1, which are 

only used in each zigzag decoder and not passed 

to any other zigzag t decoder. Therefore, the 

mark to denote the zigzag decoder can be 

omitted. 

Two-way scheduling used in each zigzag 

decoder is divided into three levels
[7]. Three 

recursion equations obtained by density evolution 

are derived by considering three levels separately 

as follows.

   
    


 




 



   


  



    


                           (1)

   
   


 




 



   


  



    


                      (2)

   
    


 




 



   


  



    






   
    

                                    (3)

where φ(∙) is defined in[10].

In (3), the superscript k of      is omitted 

since it does not depend on k. The mean of 

message at information node can be tracked by 

recursively computing the mean value by using 

(1), (2) and (3). The number of iterations is 

sufficiently large enough to determine whether the 

error can be corrected for the given channel noise 

level and the threshold   is obtained. The 

values of   for various CZZ codes are 

calculated in the next section.

Ⅲ. Optimal Concatenated Zigzag 

Codes

Since CZZ code can have various structures for 

a fixed code rate, it is important to find the 

optimal (Nc, dc)-CZZ code. In most of the 

mobile communication systems, the code rate of 

mother error-correcting code is usually 1/n and by 

modifying this code (e.g. using puncturing), higher 

rates can be achieved. Therefore, we only 

consider the (Nc, dc)-CZZ codes of rate 1/n. 

Using (1), (2) and (3), we can easily compute the 

threshold values for various (Nc, dc)-CZZ codes 

using two-way scheduling. The threshold values of 

various CZZ codes are given in Table I. The overall 

code rate R of CZZ code is   where r 

is the code rate of zigzag code and  . 

Therefore, we get     and for the 

code rate 1/n,      should be satisfied. 

From Table I, we can see that CZZ codes 

having four zigzag codes (Nc=4) show the best 

performance for code rates 1/2, 1/3 and 1/5. For 

the rate 1/4, the optimal number of component 

codes is 6 and note that Nc=4 is impossible for 

this rate. The CZZ codes having the minimum 

number of zigzag codes are optimal for the rates 

less than 1/5. If the number of zigzag codes 

increases, weaker zigzag codes have to be used 

and at some point concatenating more zigzag 

codes with weaker error correcting capability 

gives worse overall performance. To verify the 

analytical results in Table I, they are compared 

using the simulation results. For the simulations, 

1000-bit information frames, BPSK modulation, 

Sum-product algorithm, random interleavers and 

AWGN channel are assumed. 20 and 60 iterations 

are used for two-way and flooding schedulings 
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Fig.2. Comparison of CZZ codes when different 
schedulings are used

since the performance gain is negligible as the 

iteration numbers become larger these numbers. 

However, if the number of information bits 

increases, the iteration number can be increased to 

get better performance.

Fig.2 compares the simulation results of the 

optimal CZZ codes with rates 1/2, 1/3 and 1/5 

when using two-way and flooding schedulings, 

respectively. This simulation results are well 

matched to the analytical results in Table I. 

Although the simulation results are about 1dB far 

from the analytical bound at FER=10-4because of 

the short codeword length, the differences among 

simulation curves are well matched to those for 

the analytical results. Therefore, we can conclude 

that the performance of CZZ code does not 

depend on which scheduling is used. When many 

interleavers are used to construct a CZZ code of 

low code rate, it may be efficient to use flooding 

scheduling since it has smaller decoding delay 

compared with the two-way scheduling. However, 

the penalty is the big memory requirement for the 

sparse parity-check matrix.

The simulation results in Fig. 3 also confirm 

the analytical results in Table I. As the number 

of zigzag codes increases, the simulation results 

become farther from those analytically predicted 

by density evolution. The reason is that it is 

difficult to construct many interleavers which are 

perfectly random to each other and, as a result, 

Rate

*σ
Nc dc

Flooding

scheduling

Two-way

scheduling

1/2

0.877 0.877 3 5

0.894 0.895 4 6

0.887 0.888 5 7

0.856 0.857 6 8

1/3

0.891 0.891 2 3

1.159 1.160 4 4

1.145 1.146 6 5

1.110 1.111 8 6

1/4

1.322 1.322 3 3

1.357 1.358 6 4

1.305 1.306 9 5

1.249 1.251 12 6

1/5

1.541 1.542 4 3

1.502 1.503 8 4

1.431 1.433 12 5

1/6

1.702 1.703 5 3

1.623 1.626 10 4

1.541 1.544 15 5

1/7

1.835 1.837 6 3

1.729 1.733 12 4

1.641 1.645 18 5

1/8

1.950 1.952 7 3

1.826 1.830 14 4

1.735 1.840 21 5

TABLE I. THRESHOLD VALUES FOR VARIOUS (Nc, 
dc)-CZZ CODES

short cycles appear in Tanner graph. However, the 

performance trend for various Nc‘s is well 

explaining the analytical result. For regular LDPC 

codes, the number of edges connected to the 

variable nodes should be larger than two to 

achieve good performance and avoid error floor 
[1,

9]. From Fig.3 (a) and (b),we can see that the 

number of edges connected to the information 

nodes (i.e. the number of zigzag codes) should be 

larger than three to avoid error floor and it is 

confirmed that Nc = 4 is optimal for rates 1/2, 

1/3 and 1/5.
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Fig.3. Comparison of various CZZ codes for a fixed rate 
(Dash-dot line: Threshold values, Solid line: Simulation 
result).

Ⅳ. Conclusions

In this paper, we applied density evolution with 

a Gaussian approximation to CZZ codes when 

two-way scheduling is used and derive the new 

recursion equations. By using these equations, we 

obtained the threshold values for various CZZ 

codes and based on those results, the threshold 

values of various CZZ codes are calculated. Since 

the thresholds of flooding and two-way 

schedulings are the same, it is confirmed that the 

asymptotic performance of CZZ codes does not 

depend on the scheduling scheme. Also, the 

optimal structures of CZZ codes are derived for 

various code rates. As the future work, it may be 

an interesting problem to design the zigzag 

interleavers such that the short cycles can be 

avoided.
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