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ABSTRACT

In this paper, we present two methods of correcting bit errors in constant amplitude multi-code (CAMC)

CDMA, which uses the redundant bits only. The first method is a parity-based bit correction with

hard-decision, where the received signals despread into a two-dimensional structure with both horizontal parity

and vertical parity. Then, an erroneous bit is corrected for each 4 x 4 pattern. The second method is a turbo

decoding, which is modified from the decoding of a single parity check product code (SPCPC). Experimental

results show that, in the second method, the redundant bits in CAMC can be fully used for the error

correction and so they are not really a loss of channel bandwidth. Hence, CAMC provides both a low

peak-to-average power ratio and robustness to bit errors.
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I. Introduction

Multi-code CDMA (MC-CDMA)™™ can pro-
vide versatile data rates in wide-band mobile com-
munications by assigning multiple channels to a
single user. Since the transmission signal in
MC-CDMA is the sum of several random binary
signals, the peak-to-average power ratio (PAPR) is
large and this loads a burden for a battery-oper-
ated mobile terminal. A pre-coding scheme by
Wada! provides an effective way of reducing the
PAPR when the input is either 3 bits or 9 bits.
Kim' extended Wada’s scheme into a constant
amplitude multi-code (CAMC) in a recursive struc-
ture, which has no restriction in the input size.
CAMC can accommodate an input of M(=3%) bits
and generates N(=4%) bits of constant amplitude.

A drawback of CAMC is the low code rate of
R(=(3/4)%), due to the redundant bits for achieving
constant amplitude. The nature of these redundant

bits is parity. Considering the fact that current co-
des built on [4] employ additional channel coding
module, utilizing the redundant bits for correcting
transmission bit errors to do without additional
FEC module would compensate for the low code
rate. We show that these redundant bits in
CAMC can be fully used for the correction of bit
errors and so they are not really a loss of chan-
nel bandwidth.

In this paper, two methods of utilizing parity
bits in CAMC for error correction will be
presented. The first method is a parity-based bit
correction, following a hard decision of the re-
ceived signal. In constant amplitude multi-code bi-
orthogonal code keying (MBCK)"', error correc-
tion is based on parity checking and searching for
the most likely codeword. The proposed method
has advantages over previous schemes: It provides
dmin=2" and so a true error correction is possible,
while, in [5], dmin is just 2 so the error de-
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tection-and-search requires heavy computation.

The second method is a turbo decoding of the
received signal, which was used for the decoding
of single parity check product code (SPCPC). A
received CAMC signal vector is despread into four
quarter-sized vectors in the form of SPCPC'™.
Kim"”' showed that CAMC for N=4" is equivalent
to k-dimensional SPCPC with a minimum distance
of dwin=2", and he presented a turbo decoding
scheme with a performance near the cutoff rate.
CAMC is equivalent to SPCPC and that CAMC
outperforms a generic SPCPC in error correction.

In Chapter II, CAMC signal generation is
described. In Chapter I and Chapter IV, the pro-
posed algorithms for the parity-based decoding
and the turbo-decoding for CAMC are presented.
In Chapter V, computer simulation results on
BER comparison under AWGN channel is pre-

sented, followed by a conclusion in Chapter VI.
II. Generation of CAMC Signal

Fig. 1 shows the encoding process of basic-lev-
el CAMC signal vector'. In the following vector
notations, a superscript at bold-faced letters repre-
sents the size of the vector and a subscript of
{0,1,2,3}, if any, represents the index of the four
quadrant vectors. An input of M bits is divided
into M/3 groups of three bits each, [b,b,b,]. At
Q*, a parity bit b, is appended and then
[bys bys by, by] is spread by 4 x 4 Hadamard matrix,
H', into four bits of unit amplitude, [vg> V1> Vg 03]
The proof for constant amplitude is in Lemma 1.

Continuing this way, finally, the output of three
QM* encoders (3N/4 bits) and their bit-by-bit
parity (N/4 bits) are concatenated and then are

spread by ﬁN, into N bits of unit amplitude,

dll 0

b
b3 d1 bl ~ V4
—<“—{ S/P d, =h, H* "{}_’

d,
Lippt)

Fig. 1. Generation of the basic level 4-bit CAMC vector

[vg> 0y ..o vy_1]. Expression for the parity relation
and the spreading process for the top-level CAMC

vector are shown in (1) and (2).

A= T iy N o
e g T ®

Y is an N x N pseudo-Hadamard matrix
whereI™* is an N/4 x NJ4 identity matrix. When

N=4, i is identical to a regular Hadamard ma-

trix H?.

[N/4 [NI4 [N/4 N4
N IN/471N/4 I1v/4711v/4
T N/4 [ N/4_[N/4_N/4
[N/4 _[N/4_N/4a [N/4

Lemma 1. Each element of vV is either (+1) or
-1
Proof) Rewriting (2) for v*= vy, v,,v,,v,] (basic

level encoding) produces:

= (dy +d, +dy +d;)/2
<(1n —dy +d, 7‘13)/2
(dy+dy —dy —d,)/2
(dy —dy —dy +dy)/2

Yo
Uy
Uy
Us

Equation (1) produces “3-to-1” distribution
among the four bits, (dj,d;,d, d,): three of them
have the same value and the rest has the opposite
value (e.g. [1 -1 1 1Jor [1 -1 -1 -1]). v,
is bound to be either (+1/—1) since it is the
sum of all four bits. Second, v, is the difference
between (d,+d,) and (d, +d,). If d, and d, are
the same, then d,+d, =0. Hence v, is the sum
of two identical bits and is equal to either
(+1/—=1). If d, and d, are not the same, then
dy+d,=0 and v, =—(d, +d,)/2=(+1/-1). In a
similar way, we can show that v, and v, are also
(+1/—1). The proof for the top-level vector vV is
similar since the “3-to-1” distribution also holds
among the corresponding bit positions in
(V4,4 G4, VN14) | Hence, each bit in vV has

a value of (+1/—1). (End of proof)
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II. Parity-Based Bit Correction

Since the parity bits are intermixed with in-
formation bits in the spreading process, there are
no explicit parity bits in a CAMC vector.
Nevertheless, we can extract them by despreading.
a J-level vector, vV, can be despread into four
(J-1)-level vectors, where vév/ * is the bit-by-bit
parity vector of (vY74,vi4,v/4).

1 ~
(VA4 [ 04 4] 5" WwW.n¥ 3)
[N/4  [N/4 [N/4 [N/4

[N/A _[N/4  [N/4_N/4
2 [V/4  [NI4_TN/4 _[N/4
[V/4 _NIA_N/4  {N/4

uév/d = NMGBu{VMEBuéVM %)

In addition to the explicit parity, an implicit
parity relation also holds in a CAMC vector as

follows:

Lemma 2. The last segment of a CAMC vector
is a bit-by-bit parity vector of the preceding 3

segments.
w1 = o ipu )

Proof. Let vV be represented as a concatenation
of 4 segments (uév/“,uiv/ 4 uév/“, uév/“). Substitution

of v" by [ul4ul*u}’*ud’*] in (3) produces
W= 5 () ©)

All the elements of ul’*,ul/4,ul%,u}’* and
v)* are (+1/—1). The corresponding bits in
(w74, "%, ul"%, ul’)  should have “3-to-1" dis-
tribution: Three of them are the same and the
rest is the opposite (eg [-1 +1 -1 -1]).
Otherwise, the elements of vA7* cannot have a
value of (+1/—1) since it is half the sum of
w4 w4 u* and w’*. The “3-to-1" distribution

N/4

A, s and

among up”% u"% u

i means that a

bit-by-bit odd parity relation holds among them.
(End of proof)
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Now we describe the details of error
correction. Define WV as a 4 x (N/4) matrix, the
rows of which are the 4 quadrant vectors,
(V4,14 74, ¥N14) | The fourth row is the verti-
cal parity and the last segment of each row is
the horizontal parity. ie., WY is in the form of
SPCPC with both vertical and horizontal parity.
Details of error correction are in Step I —~ Step
4. Each of error-corrected ()4, vV/4,v)"%) is re-
cursively despread into four (J-2)-level vectors,
[v//19|vV/16|Y/16|yN/16]  Note that the fourth vector
V"% cannot be despread into genuine lower level
vectors since it has been generated not by spread-
ing some lower level vectors, but just by a parity
operation. This process continues until error cor-
rection is finally performed among four basic-level
vectors. An example for N=16 is shown in Fig 2.
A single bit error in a 16-bit Rx vector is dif-
fused into 3 bits in the despreading process.
Nevertheless, these erroneous bits get corrected in-
to a clean W' by vertical and horizontal parity
checking.

Step 1. Check vertical parity among the 4 bits

for each column of W¥.

P (i) = {17 ifvév/“(i):V;')V/‘l(i)@v{w‘l(i)@‘ém(i) @
0, otherwise
Li=0,1,, (%71

Step 2. Check horizontal parity in (5) among

the 4 segments of the first row.

P ()= [1, if ulf/19(5) = w16 (;) ul16(j) Bul/18(5)
0, otherwise
. N
,J=0,1, ’(16 1)
®)

Step 3. Do from i=0 to (N/4-1)

/* Correct a bit error for each 4 x 4 pattern */

If both P,(i) and P (imod N/16) are O, then
replace the suspicious bit by the value inducible
from the horizontal parity.

www.dbpia.co.kr
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Tevector=[1 1 1 1 1 1

Rxwvector=[1 1 1 1 -1 1

41T 1 1 1 1 1 1 1]

B — error

A 141 4 1 11 1]

a) Tx vector and Rx vector

O: to be corrected

Y4 o1 (o) 4
vil 1 4 1

41 1
\': 1 1 1

U

A

b) Correcting error noisy VV16
4. .4, 4, 4
[vo,vl,v2,v3]

H parity

¢) Error corrected clean

Fig. 2. An illustration of parity-based bit correction

Step 4. Repeat Step 2 and Step 3 for the sec-
ond/third/fourth row of W¥.

IV. Turbo Decoding for CAMC

4-1. Iterative Decoding of SPCPC

Hagenauerlg] developed a soft input, soft out-
put-based decoding for a multi-dimensional product
code. Rankin” extended the works of [8] and
proposed an iterative decoding algorithm for
SPCPC. In the encoder, a parity bit is appended
to each of (n-1)-bit sequence along all the di-
mensions of an interleaved hypercube of (n-l)Q
information bits. The encoded output of n® bits, is
a Q-dimensional product code with a code rate of
(1-1/m)°. The code rate of a K-level CAMC is the
same as that of K-dimensional SPCPC with n=4.

The LLR, Z,(X,), for the k-th bit in the g-th
dimension is iteratively refined by exchanging the
extrinsic information between dimensions. LLR
consists of three terms: the channel reliability
which is proportional to the signal strength, the a
priori information (APIL, 4 (X,)), and the extrinsic
information (EL E, (X,)). X=[X,, X,,.., X, ,] is
the input vector and Y=[Y,, Y¥;,.., Y, ,] is the
received signal through AWGN channel.

PriX, =+1Y
{ L2y p (A, (x)
o

®

1, (%) =loe g = =

E,J(Xk)ZZtanh’l( ‘ﬁl tanh(M)
j=0, j#k 2
(10)
Q
4,(x)= 3 E(Xx) (11)

i=1,i#q

4-2. Proposed Turbo-Decoding

The parities in CAMC are different from those
in SPCPC. Since an explicit parity relation holds
only among four quadrant vectors at the same
level, the parity relation among four J-level
CAMC vectors holds only in the context of the
J-th dimension of SPCPC. For parities in other
dimensions, we need to spread/despread CAMC
vectors. Likewise, EI and API associated with
J-level CAMC vectors are valid only in the J-th
dimension. Hence, when EI is exchanged between
dimensions, it needs to be spread/despread to fit
into the four quadrant structure in the correspond-
ing dimensions.

Fig. 3 illustrates the block diagram for the
turbo-decoding of CAMC with N=64, which is
equivalent to 3-dimensional SPCPC. S(.) and D(.)
represent the spreading process and the despread-
ing process, respectively. Expressions for LLR
(£,(x7), API (A4,(X}) and EI (5 (X}) for
CAMC decoding are shown in (12), (13) and
(14). X! is the k-th bit of the vector reconfigured

[x¢, x0,.. X5 ] and

1

into the g¢-th dimension.

[¥Z, Y7, ., Y4 ], (N=47) is an input vector and
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the received vector which are reconfigured into
the g-th dimension. The final decision on, Xf, is

obtained by hard-limiting of the top-level LLR.
2
LX) = o) Yi+ B (X)) + A4, (X)) (12)

Nod A (X +2,/0* V!
E;, ()(]f) =2tanh™ 1(. ]ﬁ_[ﬁtanh(ql‘zj
Jj=0. j#k

13)

4,00 =Ssmm+ Y pEoy) a9

i=1 i=q+1

V. Computer Simulation Results

We tested the performance of CAMC for the
two proposed methods, by computer simulation. In
the simulation, BPSK modulated signal is trans-
mitted through a binary-input AWGN channel
with varying E/N,. After correctible errors are
removed from the received signal, we despread it
back to the original information bits, for which
BER is measured.

In the test for the parity-based bit correction
method (labeled as CAMC-P), the received signal
is demodulated and hard-limited into a binary
value. Then, correctible errors are removed and
we compared the BER of CAMC-P, with
CAMC-None (CAMC without any error correc-
tion) in Fig. 4. BER comparison with MBCK-P
(MBCK with parity-based error correction)” is pre-
sented for N=16, where MBCK and CAMC have
equal code rates. For N=16, CAMC-P and

Dé Eé [o][s]

API API API
yee 3y Bl gys Sl BV AVCY i

Decodel
D D D
dim-3 dim-2 dim-1

|E|=Despreading IEl =Spreading

Fig. 3. Block diagram of CAMC decoding for N=64

™
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MBCK-P appear to have equal performance. The
gain in E/N, obtained by CAMC-P, for BER of
10°, is 1.4 dB (N=256) and 0.7 dB (N=64), com-
pared to CAMC-None.

In the test for the turbo-decoded CAMC
(labeled as CAMC-T), the BER performance is
compared in two ways. First, we compared it
with that of SPCPC (n=4), from 2-dimension to
4-dimension. The code rates are R,=9/16 (2-d),
Rs=27/64 (3-d) and R4=81/256 (4-d). Second, the
performance of CAMC-T is compared with the
cutoff rate®, which represents a practical upper
limit of the transmission rate.

BER for CAMC-T and SPCPC is shown in
Fig. 5. For BER of 107, the £/N, in CAMC-T
is 1.4 dB lower (4-d) and 1.3 dB lower (3-d)
than that in SPCPC. CAMC outperforms SPCPC
when the dimension is larger than two. This is an
expected result since the error correction in
CAMC is boosted by the processing gain. On the
other hand, the fourth quadrant vector of CAMC
is not decomposable into lower level quadrants
and so CAMC has fewer parity bits than SPCPC.
This accounts for why the performance of CAMC
is lower than SPCPC in low dimensions.

In Fig. 6, the performance of turbo-decoded
CAMC is compared with the cutoff rate.
Comparing 5/N, at 10° for CAMC (0.4 dB for
4-d) to the cutoff rate (2.0 dB for R4=81/256),
CAMC is 1.6 dB better than the cutoff rate.
Hence, the redundant bits in CAMC with tur-
bo-decoding are fully utilized for error correction.

BER of CAMC-None, CAMC-P and MBCK-P

7*| --#=- Uncoded BPSK |....
--%-- MBCK-P(16) [
--E-- CAMC-None(16)
1g%| —&—CAMC-P(16) |
--6-- CAMC-None(64) |
—sk— CAMC-P(64)
5| =%~ CAMC-None(256)
—&— CAMC-P(256)
-1 0 1

Eb/No [dB]
Fig. 4 BER of CAMC-P with CAMC-None and MBCK-P
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BER of CAMC-T and SPCPC

BER

=== Uncoded BFSK
—B— CAMC T2d
107| --BF- sPCPC 2d
—— CAME-T 3-d
--§-- SPCPC 3 d

| —— CAMC-T4d
-=w-- SPCPC 44

-z E] 0

5

1
Eb/Mao [dB]
Fig. 5. BER of CAMC-T and SPCPC (2-d, 3-d and 4-d)

Comparison with Cutoff Rate

S

EbMNo[dB]

@ 4-dCAMC

0
(K] 02 03 04 05 06 o7 08 09
Code Rate

Fig. 6. Cutoff rate (solid line) and 4-d CAMC (circle)

VI. Conclusions

We presented two methods of correcting bit er-
rors in CAMC, by using the redundant bits only.
The first method is a parity-based bit correction,
which makes use of the two-dimensional parity
structure of the decomposed CAMC signal. We
showed that a decomposed CAMC vector is pro-
vided with both explicit vertical parity and im-
plicit horizontal parity. Though the improvement
in BER is not that high, this method is simpler
and shows better or equal performance, when
compared to other number-crunching methods.

The second method is a turbo decoding, which
is similar to the one used for the decoding of
SPCPC. Though the computational complexity of
this method is higher than the first method, the
performance of error correction reaches the limit

of the cutoff rate and so the redundant bits are

not really a loss of channel bandwidth. Thus, the
channel coding module used in the current codes
based on [4], can be substituted by the proposed
method.

Since CAMC has a good error correction per-
formance with a simple coding scheme, many ap-
plications may be found in wide-band mobile
communications and in signal storage.
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