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ABSTRACT

In this paper, we present two methods of correcting bit errors in constant amplitude multi-code (CAMC) 

CDMA, which uses the redundant bits only. The first method is a parity-based bit correction with 

hard-decision, where the received signals despread into a two-dimensional structure with both horizontal parity 

and vertical parity. Then, an erroneous bit is corrected for each 4 x 4 pattern. The second method is a turbo 

decoding, which is modified from the decoding of a single parity check product code (SPCPC). Experimental 

results show that, in the second method, the redundant bits in CAMC can be fully used for the error 

correction and so they are not really a loss of channel bandwidth. Hence, CAMC provides both a low 

peak-to-average power ratio and robustness to bit errors.

Key Words : Error Correction, Constant Amplitude, Multi-code, Parity, CDMA

※ The authors wish to thank the University Seoul for the Research Grant 2005 to support this study.

* Dept of ECE, University of Seoul (shk0802@uos.ac.kr, sungmankim@uos.ac.kr, mark3552@uos.ackr, tongsok@kt.co.kr, dae-

won@kti.co.kr, yckim@uos.ac.kr)

  논문접수번호：KICS2006-04-177,  접수일자：2006년 4월 25일,  최종논문접수일자：2006년 11월 6일

Ⅰ. Introduction

Multi-code CDMA (MC-CDMA)[1]-[4] can pro-

vide versatile data rates in wide-band mobile com-

munications by assigning multiple channels to a 

single user. Since the transmission signal in 

MC-CDMA is the sum of several random binary 

signals, the peak-to-average power ratio (PAPR) is 

large and this loads a burden for a battery-oper-

ated mobile terminal. A pre-coding scheme by 

Wada
[3] provides an effective way of reducing the 

PAPR when the input is either 3 bits or 9 bits. 

Kim
[4] extended Wada’s scheme into a constant 

amplitude multi-code (CAMC) in a recursive struc-

ture, which has no restriction in the input size. 

CAMC can accommodate an input of M(=3
K) bits 

and generates N(=4K) bits of constant amplitude.

A drawback of CAMC is the low code rate of 

R(=(3/4)
K), due to the redundant bits for achieving 

constant amplitude. The nature of these redundant 

bits is parity. Considering the fact that current co-

des built on [4] employ additional channel coding 

module, utilizing the redundant bits for correcting 

transmission bit errors to do without additional 

FEC module would compensate for the low code 

rate. We show that these redundant bits in 

CAMC can be fully used for the correction of bit 

errors and so they are not really a loss of chan-

nel bandwidth.

In this paper, two methods of utilizing parity 

bits in CAMC for error correction will be 

presented. The first method is a parity-based bit 

correction, following a hard decision of the re-

ceived signal. In constant amplitude multi-code bi-

orthogonal code keying (MBCK)
[5], error correc-

tion is based on parity checking and searching for 

the most likely codeword. The proposed method 

has advantages over previous schemes: It provides 

dmin=2k and so a true error correction is possible, 

while, in [5], dmin is just 2 so the error de-
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tection-and-search requires heavy computation. 

The second method is a turbo decoding of the 

received signal, which was used for the decoding 

of single parity check product code (SPCPC). A 

received CAMC signal vector is despread into four 

quarter-sized vectors in the form of SPCPC
[6].  

Kim
[7] showed that CAMC for N=4k is equivalent 

to k-dimensional SPCPC with a minimum distance 

of dmin=2k, and he presented a turbo decoding 

scheme with a performance near the cutoff rate. 

CAMC is equivalent to SPCPC and that CAMC 

outperforms a generic SPCPC in error correction.

In Chapter Ⅱ, CAMC signal generation is 

described. In Chapter Ⅲ and Chapter Ⅳ, the pro-

posed algorithms for the parity-based decoding 

and the turbo-decoding for CAMC are presented. 

In Chapter Ⅴ, computer simulation results on 

BER comparison under AWGN channel is pre-

sented, followed by a conclusion in Chapter Ⅵ.

Ⅱ. Generation of CAMC Signal

Fig. 1 shows the encoding process of basic-lev-

el CAMC signal vector[4]. In the following vector 

notations, a superscript at bold-faced letters repre-

sents the size of the vector and a subscript of 

{0,1,2,3}, if any, represents the index of the four 

quadrant vectors. An input of M bits is divided 

into M/3 groups of three bits each,     . At 

 , a parity bit   is appended and then 

      is spread by 4 x 4 Hadamard matrix, 



, into four bits of unit amplitude,      . 

The proof for constant amplitude is in Lemma 1.

Continuing this way, finally, the output of three 

  encoders (3N/4 bits) and their bit-by-bit 

parity (N/4 bits) are concatenated and then are 

spread by 


, into N bits of unit amplitude,

3b
00 bd =

S/P
11 bd =

22 bd =

3d

4H~
4v

2/1
3b

00 bd =

S/P
11 bd =

22 bd =

3d

4H~
4v

2/1

Fig. 1. Generation of the basic level 4-bit CAMC vector 

 …     . Expression for the parity relation 

and the spreading process for the top-level CAMC 

vector are shown in (1) and (2).




⊕
⊕

                     (1)

 


∙ 





 ∙


           (2)




 is an N x N pseudo-Hadamard matrix 

where   is an N/4 x N/4 identity matrix. When 

N=4, 


 is identical to a regular Hadamard ma-

trix  .










       

       

       

       






Lemma 1. Each element of   is either (+1) or 

(-1)

Proof) Rewriting (2) for        (basic 

level encoding) produces:

      
     
     
     

Equation (1) produces "3-to-1" distribution 

among the four bits,    : three of them 

have the same value and the rest has the opposite 

value (e.g. [1 –1  1  1] or [1 –1 –1 –1]).   

is bound to be either  since it is the 

sum of all four bits. Second,   is the difference 

between    and   . If   and   are 

the same, then    . Hence   is the sum 

of two identical bits and is equal to either 

. If   and   are not the same, then 

    and     . In a 

similar way, we can show that   and   are also 

. The proof for the top-level vector   is 

similar since the "3-to-1" distribution also holds 

among the corresponding bit positions in 


 

 
 

.  Hence, each bit in   has 

a value of .             (End of proof)
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Ⅲ. Parity-Based Bit Correction

Since the parity bits are intermixed with in-

formation bits in the spreading process, there are 

no explicit parity bits in a CAMC vector. 

Nevertheless, we can extract them by despreading. 

a J-level vector,  , can be despread into four 

(J-1)-level vectors, where 
  is the bit-by-bit 

parity vector of 
 

 
.


 

 
 

  

∙∙



 


∙∙






       

       

       

       






     (3)

                  (4)

In addition to the explicit parity, an implicit 

parity relation also holds in a CAMC vector as 

follows:

Lemma 2. The last segment of a CAMC vector 

is a bit-by-bit parity vector of the preceding 3 

segments.

                 (5)

Proof. Let   be represented as a concatenation 

of 4 segments 
 

 
 

. Substitution 

of   by 





   in (3) produces


 








           (6)

All the elements of 
 

 
 

  and 


  are . The corresponding bits in 


 

 
 

 should have "3-to-1" dis-

tribution: Three of them are the same and the 

rest is the opposite (e.g. [-1 +1 -1 -1]). 

Otherwise, the elements of 
  cannot have a 

value of  since it is half the sum of 


 

 
  and 

 . The "3-to-1" distribution 

among 
 

 
  and 

  means that a 

bit-by-bit odd parity relation holds among them.

(End of proof)

Now we describe the details of error 

correction. Define   as a 4 x (N/4) matrix, the 

rows of which are the 4 quadrant vectors, 


 

 
 

. The fourth row is the verti-

cal parity and the last segment of each row is 

the horizontal parity. i.e.,   is in the form of 

SPCPC with both vertical and horizontal parity. 

Details of error correction are in Step 1 ～ Step 

4. Each of error-corrected 
 

 
 is re-

cursively despread into four (J-2)-level vectors, 







  . Note that the fourth vector 


  cannot be despread into genuine lower level 

vectors since it has been generated not by spread-

ing some lower level vectors, but just by a parity 

operation. This process continues until error cor-

rection is finally performed among four basic-level 

vectors. An example for N=16 is shown in Fig 2. 

A single bit error in a 16-bit Rx vector is dif-

fused into 3 bits in the despreading process. 

Nevertheless, these erroneous bits get corrected in-

to a clean   by vertical and horizontal parity 

checking.

Step 1. Check vertical parity among the 4 bits 

for each column of  .

     
 


⊕

⊕


 

   ⋯ 



  (7)

Step 2. Check horizontal parity in (5) among 

the 4 segments of the first row.

     
 


⊕

⊕


 

   ⋯ 



  

                                         (8)

Step 3. Do from i=0 to (N/4-1)

/* Correct a bit error for each 4 x 4 pattern */

If both   and   are 0, then 

replace the suspicious bit by the value inducible 

from the horizontal parity.
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  a) Tx vector and Rx vector

b) Correcting error noisy         c) Error corrected clean 


  

  
  

 

Fig. 2. An illustration of parity-based bit correction

Step 4. Repeat Step 2 and Step 3 for the sec-

ond/third/fourth row of  .

Ⅳ. Turbo Decoding for CAMC

4-1. Iterative Decoding of SPCPC

Hagenauer
[8] developed a soft input, soft out-

put-based decoding for a multi-dimensional product 

code. Rankin[7] extended the works of [8] and 

proposed an iterative decoding algorithm for 

SPCPC. In the encoder, a parity bit is appended 

to each of (n-1)-bit sequence along all the di-

mensions of an interleaved hypercube of (n-1)Q  

information bits. The encoded output of nQ bits, is 

a Q-dimensional product code with a code rate of 

(1-1/n)Q. The code rate of a K-level CAMC is the 

same as that of K-dimensional SPCPC with n=4.

The LLR,  , for the k-th bit in the q-th 

dimension is iteratively refined by exchanging the 

extrinsic information between dimensions. LLR 

consists of three terms: the channel reliability 

which is proportional to the signal strength, the a 

priori information (API, ), and the extrinsic 

information (EI, ).  …     is 

the input vector and  …      is the 

received signal through AWGN channel.

    

 


     

                                         (9)

    
  

  

  


╱

     

                                      (10)

   
  



            (11)

4-2. Proposed Turbo-Decoding

The parities in CAMC are different from those 

in SPCPC. Since an explicit parity relation holds 

only among four quadrant vectors at the same 

level, the parity relation among four J-level 

CAMC vectors holds only in the context of the 

J-th dimension of SPCPC. For parities in other 

dimensions, we need to spread/despread CAMC 

vectors. Likewise, EI and API associated with 

J-level CAMC vectors are valid only in the J-th 

dimension. Hence, when EI is exchanged between 

dimensions, it needs to be spread/despread to fit 

into the four quadrant structure in the correspond-

ing dimensions. 

  Fig. 3 illustrates the block diagram for the 

turbo-decoding of CAMC with N=64, which is 

equivalent to 3-dimensional SPCPC. S(.) and D(.) 

represent the spreading process and the despread-

ing process, respectively. Expressions for LLR 

( 
), API ( 

) and EI ( 
) for 

CAMC decoding are shown in (12), (13) and 

(14). 
  is the k-th bit of the vector reconfigured 

into the q-th dimension. 
 

…      and 


 

…     , (N= ) is an input vector and 
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Fig. 4 BER of CAMC-P with CAMC-None and MBCK-P
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Fig. 3. Block diagram of CAMC decoding for N=64

the received vector which are reconfigured into 

the q-th dimension. The final decision on, 
 , is 

obtained by hard-limiting of the top-level LLR.
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                                       (13)
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
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     (14)

Ⅴ. Computer Simulation Results

We tested the performance of CAMC for the 

two proposed methods, by computer simulation. In 

the simulation, BPSK modulated signal is trans-

mitted through a binary-input AWGN channel 

with varying  . After correctible errors are 

removed from the received signal, we despread it 

back to the original information bits, for which 

BER is measured.

In the test for the parity-based bit correction 

method (labeled as CAMC-P), the received signal  

is demodulated and hard-limited into a binary 

value. Then, correctible errors are removed and 

we compared the BER of CAMC-P, with 

CAMC-None (CAMC without any error correc-

tion) in Fig. 4. BER comparison with MBCK-P 

(MBCK with parity-based error correction)
[5] is pre-

sented for N=16, where MBCK and CAMC have 

equal code rates. For N=16, CAMC-P and 

MBCK-P appear to have equal performance. The 

gain in   obtained by CAMC-P, for BER of 

10
-5, is 1.4 dB (N=256) and 0.7 dB (N=64), com-

pared to CAMC-None.

In the test for the turbo-decoded CAMC 

(labeled as CAMC-T), the BER performance is 

compared in two ways. First, we compared it 

with that of SPCPC (n=4), from 2-dimension to 

4-dimension. The code rates are R2=9/16 (2-d), 

R3=27/64 (3-d) and R4=81/256 (4-d). Second, the 

performance of CAMC-T is compared with the 

cutoff rate
[9], which represents a practical upper 

limit of the transmission rate. 

BER for CAMC-T and SPCPC is shown in 

Fig. 5. For BER of 10
-5, the   in CAMC-T 

is 1.4 dB lower (4-d) and 1.3 dB lower (3-d) 

than that in SPCPC. CAMC outperforms SPCPC 

when the dimension is larger than two. This is an 

expected result since the error correction in 

CAMC is boosted by the processing gain. On the 

other hand, the fourth quadrant vector of CAMC 

is not decomposable into lower level quadrants 

and so CAMC has fewer parity bits than SPCPC. 

This accounts for why the performance of CAMC 

is lower than SPCPC in low dimensions.

In Fig. 6, the performance of turbo-decoded 

CAMC is compared with the cutoff rate. 

Comparing   at 10-5 for CAMC (0.4 dB for 

4-d) to the cutoff rate (2.0 dB for R4=81/256), 

CAMC is 1.6 dB better than the cutoff rate. 

Hence, the redundant bits in CAMC with tur-

bo-decoding are fully utilized for error correction.
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Fig. 6. Cutoff rate (solid line) and 4-d CAMC (circle)

Fig. 5. BER of CAMC-T and SPCPC (2-d, 3-d and 4-d)

Ⅵ. Conclusions

We presented two methods of correcting bit er-

rors in CAMC, by using the redundant bits only. 

The first method is a parity-based bit correction, 

which makes use of the two-dimensional parity 

structure of the decomposed CAMC signal. We 

showed that a decomposed CAMC vector is pro-

vided with both explicit vertical parity and im-

plicit horizontal parity. Though the improvement 

in BER is not that high, this method is simpler 

and shows better or equal performance, when 

compared to other number-crunching methods. 

The second method is a turbo decoding, which 

is similar to the one used for the decoding of 

SPCPC. Though the computational complexity of 

this method is higher than the first method, the 

performance of error correction reaches the limit 

of the cutoff rate and so the redundant bits are 

not really a loss of channel bandwidth. Thus, the 

channel coding module used in the current codes 

based on [4], can be substituted by the proposed 

method.

Since CAMC has a good error correction per-

formance with a simple coding scheme, many ap-

plications may be found in wide-band mobile 

communications and in signal storage.

“”
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