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요   약

본 논문에서는 상관계수를 바탕으로 신호부공간을 추정하는 COPAST(correlation-based projection approximation 

subspace tracking)의 성능을 향상시키기 위하여 상관계수를 구하는 부분을 순방향 신호 벡터로부터 상관계수를 

구하고 동시에 역방향 신호 벡터에서도 상관계수를 구하여 신호 부공간을 추정하는 방법을 제안한다. 컴퓨터 모의

실험을 통해서 제안된 방법이 기존의 COPAST에 비해서 약 5dB의 신호 부공간 추정 정확도에 향상이 있었음을 

확인하였다. 이로써 순방향과 역방향 모두를 사용하는 것이 성능향상에 도움이 됨을 보였다.
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ABSTRACT

In this paper, we propose a forward/backward correlation-based subspace estimation technique, which is 

called forward/backward correlation-based projection approximation subspace tracking (FB-COPAST). The 

FB-COPAST utilizes the forward and backward correlation matrix in projection approximation approach to 

develop the subspace tracking algorithm. With the projection approximation, the RLS-based FB-COPAST is 

presented. The RLS-based FB-COPAST algorithm has the better performance than the recently developed 

COPAST method. From the simulation results, we can confirm the proposed FB-COPAST outperforms the 

COPAST as well as the conventional PAST in the estimation accuracy by about 5dB in steady state.

Ⅰ. Introduction 

 In recent years, subspace-tracking algorithms have 

been intensively studied and widely applied to reduce 

the computational complexity of subspace estimation. 

Instead of updating the whole eigen-structure, sub-

space-tracking algorithm only works with the signal 

or noise subspace. This makes subspace-tracking algo-

rithm more efficient than conventional methods using 

eigenvalue decomposition (ED) or singular value de-

composition (SVD). One of the attractive sub-

space-tracking algorithms is the projection approx-

imation subspace-tracking (PAST) algorithm [1]. The 

idea of the PAST is to make the expectation of the 
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squared difference between the input vector and the 

projected vector minimum. With proper projection ap-

proximation, the PAST derives a recursive least 

squares (RLS) algorithm for tracking the signal 

subspace. However, the PAST still has room for the 

improvement in the subspace estimation accuracy. To 

improve the PAST algorithm, many different algo-

rithms have been proposed. For example, Jung-Lang 

Yu developed a correlation-based projec­tion approx-

imation subspace tracking (COPAST), to improve the 

convergence property of the sub-space tracking [2] 

and Gustafsson proposed an instrumental variable 

based PAST to cope with the colored noise case [3]. 

In this paper, we propose a new algorithm to improve 

the subspace estimation accuracy in the COPAST 

algorithm [2]. The proposed algorithm utilizes the 

normal forward ordered input vector and the reversal 

ordered input vector simultaneously. Theses forward 

and backward input vectors can build up the better 

sample covariance. Therefore, we expect an improved 

COPAST algorithm with the better subspace 

estimation accuracy.

  The outline of the paper is as follows. In section 

2, the COPAST is summarized. Section 3 discusses 

the property of covariance matrix and the estimated 

covariance matrix. Then the forward and backward 

COPAST (FB-COPAST) algorithm is derived. 

Section 4 shows simulation results to demonstrate that 

the FB-COPAST performs very well with respect to 

the subspace estimation accuracy. Finally, Section 5 

contains the conclusions.

Ⅱ. Correlation-based PAST

  The PAST (Projection Approximation Subspace 

Tracking) algorithm is one of the low complex recursive 

subspace estimation method, which is useful for DOA 

estimation. The PAST algorithm is based on the mini-

mum property of the unconstrained cost function.
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subspace. To derive recursive update of )(tW  from 

)1( −tW , Yang in [1] approximates )()( itH xW  by the 

expression )()1()( iii H xWy −=  which can be calculated 
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in a modified cost function,
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Yu developed the COPAST algorithm in [2]. The 

COPAST defines the cost function in terms of the 

correlation matrix as follows
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where Tr{ •} denotes the trace of a matrix and F 

indicates the Frobenius norm. Since the correlation 

matrix is the second-order statistic of the input vector, 

the input SNR seems to be square of that in the PAST. 

Consequently, the COPAST using the correlation 

matrix improves the performance of the PAST.  For 

convenience of finding the solution of (4), the 

ensemble correlation matrix is replaced with the 

exponentially weighted sum

∑
=

−=
t

i

Hit iit
1

)()()( xxCxx β
.         (5)

Thus, the cost function becomes

2

F
)()()()())(( tttttJ H

xxxx CWWCW −= .    (6) 

 Using the projection approximation concept and (5), 

W
H(t)Cxx(t) in (6), which is termed Cyx(t), is 

approximated to
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 Using (7), the criterion of (6) degenerates to a 

quadratic optimization problem, and is minimized by

)()()( ttt += yxxx CCW .          (8)

where )()()1()( tttt HxxCC xxxx +−= β  and + denotes the 

Moore-Penrose pseudo-inverse [2]. The COPAST 

algorithm is summarized in Table 1.
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END

Table 1. Summary of COPAST Algorithm

Ⅲ. Forward-Backward COPAST 

Algorithm

 PAST style algorithms such as PAST and COPAST, 

use the sample covariance matrix )(txxC which is,
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  Generally, the theoretical covariance matrix xxC is 

Toeplitz and persymmetric [4]. However, the 

estimated covariance matrix )(txxC  in (9) does not 

guarantee all the properties, because it does not satisfy 

the persymmetric property such as )())(( tt T CJCJ xx ≠ , 
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 is the so-called reversal matrix.

  We can make the sample covariance matrix 

Toeplitz and persymmetric by some modification of 

(9). The modified sample covariance matrix xxC
~

 is,
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  The second term of (10) has the following recursive 

form,
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  The modified sample covariance matrix )(~ txxC  

utilizes the sample covariance matrix of the reverse 

ordered vector as well as that of the normal forward 

ordered vector. Therefore, we can call the )(~ txxC  as 

the forward-backward covariance matrix. The 

forward-backward covariance matrix, )(~ txxC , is 

invariant to the transform, JJ T)(• ,

)(~))(~( tt T
xxxx CJCJ = .         (12)

(12) shows that )(~ txxC  is persymmetric [4]. Therefore, 

We may expect )(~ txxC  to be a better estimate of xxC  

than )(txxC . In turn, this means that the estimated 

principal components derived from )(~ txxC  are likely 

to be more accurate than those obtained from )(txxC .

To apply the forward-backward covariance matrix to 

the PAST style algorithm, we should modify (9) 

considering a forward-backward covariance matrix. 

The recursive forward-backward covariance matrix is 

as follows.
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  Comparing (13) with (10), (13) needs a scaling 

factor, 1/2. However, the scaling factor does not affect 

the subspace so that we dismiss the factor. Applying 

(13) to COPAST algorithm, we can derive a new 

COPAST algorithm with the forward-backward 

covariance matrix.

  To handle the forward data vector and the backward 

data vector simultaneously, we can modify the data 

vector )(tx  in (8) to ⎥
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COPAST can be modified as follows.
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Table 2. Summary of FB-COPAST Algorithm

where ( ) 1
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cursive equations for ( ) )()()1()( ~~~~~~ tttt H
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  We can derive the recursive equations from the 

derivation procedure in [2] and [3] with a little 

modification. Then, (15) becomes the following 

recursive equation.
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  The proposed forward backward COPAST 

(FB-COPAST) is summarized in Table 2.

Ⅳ. Simulation Results

  In this section, we demonstrate the applicability of 

the proposed algorithm to the subspace estimation. We 

assume the signal subspace comes from a narrow band 

far-field source by using a linear uniform array with 

8 sensors. For the experimental purpose, we set the 

scenario that the angle of arrival of the signal comes 

from -30
o.

In Fig.1, we compare the estimation accuracy of the 

proposed algorithm with the conventional PAST 

algorithm and COPAST algorithm in the fixed 

forgetting factors of 0.98 under the four different SNR 

cases of 5dB, 10dB, 15dB and 20dB, respectively. To 

compare the quality of the estimated subspace, we 

show the distance between the estimated subspace and 

the true subspace, which is defined in [3].

( )PPISS ~)~,(sin −≡θ ,        (29)

where S is the true subspace, S
~

is the estimated 

sub-space, P is the projector onto S and P~ is the 

projector onto S
~

. The results in Fig. 1 show that the 

proposed algorithm estimated the subspace more 

accurately than the conventional PAST algorithm and 

the COPAST algorithm in all SNR cases.
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  (a) Subspace estimation accuracy comparison in SNR 5dB     (b) Subspace estimation accuracy comparison in SNR 10dB
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(c) Subspace estimation accuracy comparison in SNR 15dB    (d) Subspace estimation accuracy comparison in SNR 20dB

Fig.1 The subspace estimation accuracy comparisons (solid line: the proposed algorithm, -x-: COPAST in [2], dotted line: 
the conventional PAST).

Ⅴ. Conclusion

  In this paper, we have proposed the forward-back-

ward COPAST (FB-COPAST) algorithm to estimate 

the signal subspace. The FB-COPAST applies the for-

ward-backward covariance matrix to the COPAST. It 

improves the property of the estimated covariance ma-

trix to get closer to the ideal covariance matrix. From 

the simulation results, we can confirm the proposed 

FB-COPAST outperforms the COPAST as well as the 

conventional PAST in the estimation accuracy by 

about 5dB in steady state. This result leads us to the 

conclusion that the forward-backward modification 

improves the estimation performance of the COPAST.
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