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ABSTRACT

In real-time communication services, delay constraints are among the most important QoS (Quality of Service) 

factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit 

dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput 

may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are 

used. For real-time communication services, it is very essential to predict data deliverability. This paper derives 

the delay distribution and the successful delivery probability within a given delay budget using a priori channel 

model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel 

is employed as an a priori channel model, where a two-state Markov-modulated Bernoulli process () is 

used. For a posteriori information, the channel parameters, the queue-length and the initial channel state are 

assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This 

numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal 

encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

Key Words : delay distribution, real-time service, wireless channel, channel model, queueing analysis, 

MMBP
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Ⅰ. INTRODUCTION

Real-time multimedia communication services, 

such as interactive visual conferences, over wireless 

channels have recently become popular in the 

ubiquitous world. At the decoder, each access unit 

must arrive in the decoder buffer prior to decoding. 

Otherwise, over-delayed data will be lost due to 

decoder buffer underflow, which may lead to a 

severe degradation in quality. On the other side, a 

wireless channel exhibits a much narrower and 

time-varying bandwidth compared to a wired one. 

Under these limitations, real-time multimedia 

communication over dynamic wireless channels has 

been dealt with as a challenging issue in terms of 

guaranteeing QoS under a delay constraint[1].

Fig. 1 shows a simplified example of video 

transmission systems over the wireless channel. In 

the system, a video encoder is assumed to be 

installed on the transmitter side, and encoded data 

units are transmitted from the encoder buffer over 

the wireless channel. When a data unit, the 

 
  unit in Fig. 1, is delivered to the queue, 

  data units are on the system. For a given 

channel dynamics, it is important to estimate the 

possibility of data delivery within a delay constraint 

  for the arrival data unit.

The Gilbert-Elliot channel[2] has been widely used 

as an a priori channel model generating burst-errors 

and exhibits simplicity in analysis[3][4]. The authors 

focused on calculating channel capacity and on 

deriving an error-free run distribution
[2]. Similar 

channel models were employed to solve rate control 

problems wherein these models were utilized to 
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Fig.3 (a) Three-state version of the channel model shown 
in Fig. 2, (b) its new version having two-absorbing states.

Fig. 2 Two-state Gilbert-Elliot burst-noise channel.

Fig.1 A simple queing model for use in video transmission 
systems.

predict the future channel state[1]. However, previous 

studies in which the Gilbert-Elliot channel was used 

only focused on the prediction of the future channel 

state, calculation of moments, channel capacities and 

so on, and not on the exact delay distribution.

In this paper, we present a framework for 

obtaining the delay distribution at an arbitrary time 

instance when a priori channel model and a posteriori 

information are given. For the exact derivation, a 

three-state version of the Gilbert -Elliot channel is 

expressed to derive an exact delay distribution, and a 

new Markov chain explaining state transitions 

between service-starting (or service-ending) states is 

determined. For demonstrating the effectiveness of 

the numerical analysis, the expected channel capacity 

associated with the delay distribution and the service 

probability are obtained.

Ⅱ. QUEUEING ANALYSIS

In the queuing system, it is assumed that the 

arrival times are i.i.d. according to a general 

distribution, the single server employs a 

Gilbert-Elliot burst-noise channel with the two-state 

Markov-modulated Bernoulli process (), 

and the buffer size is infinite. The queueing system 

is simply denoted as ∞.

2.1 Channel Model
The Gilbert-Elliot channel is employed

[2] as an a 

priori wireless channel model, to predict future 

behavior. This model has been found to be widely 

suitable for generating burst-errors and exhibits 

simplicity in analysis. Its state transition diagram is 

shown in Fig. 2 (b) where   and  indicate bad 

and good channel states, and  and  are the state 

transition probabilities. The state transition 

probability matrix  is then given by





 
 




 

 


 

 
           (1)

The two-state Markov chain modulates the channel 

behavior with a transmission crossover probability, 

i.e., the error probability varies according to the 

time-varying channel state. As shown in Fig. 2 (a) 

and (c), the row vector   of the crossover 

probability is given by

                            (2)

In the bad channel state, each transmission makes an 

error with the probability  , while no error 

occurs in the good channel state. Thus, the dynamic 

behavior of the wireless channel is parameterized by 

three values, ,  and  ( = 0.5).

The states in Fig. 2 can be jointly expressed as 

Fig. 3 (a). The joint states are expressed by the 

notations ↓↑↑ where the symbols ↑

and ↓ indicate success and failure of a 

transmission, respectively. The state transition 

probability matrix  is then given by
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Fig. 4 State transitions for a single service.












  
  
  

           (3)

The state transition probability is calculated under 

the assumption that channel behavior depends only 

on the current channel state[2].

2.2 Service Time Distribution
 is the sum of the service times for    

data units including the pre-arrival data units and 

the arrival data unit as shown in Fig. 1. To obtain 

, it is necessary to find each service time   

for  ⋯ . Its service time can be 

measured by counting the number of time slots that 

are passed until it reaches the first success state 

↑. In order to calculate the service time 

statistically, a state transition probability matrix  

is defined by












  
  
  

       (4)

as shown in Fig. 3 (b). 

  Fig. 4 depicts a conceptual example in which the 

state transition matrixes  and  are utilized, 

where the service for a data unit starts to be served 

at time 0 and is finished at time  along the 

bold-faced line. As long as the channel still belongs 

to the ↓ state, the data unit is not successfully 

delivered and the state transition occurs with the 

transition matrix .

2.3 The PMF of the   service
Let    be the probability that the   

service, i.e., the   data unit in the queue, begins 

to be served at time 0 and the process is finished at 

time  . It can be obtained as follows. Let   

be the row vector of the state probability at time slot 

 for the   service and be defined as ≡

↓↑↑. 

From the definition of  and , 

 ⋅,  ⋅⋅ 

and so on. Generally, 

≡⋅⋅
   ⋯ (5)

where   is the starting state for the   

service, i.e., the   data unit, under the assumption 

that each service starts from the time slot index 

   and might end at   ⋯. If the service 

time for the   data unit is   , the initial state 

at    moves to one of two states ↑↑ at 

time   . If the service is finished at time , the 

state ↓ occurs repeatedly until  and makes 

a final transition to one of two states ↑↑ at 

. Thus, ⋅
 is given by











 






 
















(6)

where    . From (5), ↓  

becomes the probability that the channel makes 

state-transitions only to state ↓ during    for 

the given initial state probability  . Thus, 

↓  can be expressed by


∀′
↓⋯↓ ′ ′


  ↓

  ↑


  ↑

 
 



(7)

where   indicates the channel state at time  

for the   service and ′∈↓↑↑. 
Hence, from (4) and (7), the pmf    of the 

  service time   is obtained by
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Fig. 5 Service-ending (or, equally, service-starting) state 
transition diagram.

   ↑↑   

↑   
  

                                       (8)

Let   be the state probability as →∞. Since 

≤    in (6),  becomes zero as →∞. Thus,

 lim
→∞
 

∞  ↑↑ 

(9)

From (9), it can be seen that the first column of 

  becomes zero as →∞. Thus, the final state 

will be absorbed into either the ↑ state or the 

↓ state.

2.4 The state transition matrix for the service 
ending state

    in (9) can be substituted by  , 

and yields

 
∞ .                  (10)

Thus, 
∞  acts similar to a state transition 

probability matrix between the two ending states 

  and  . To deal with this state 

transition, the state transition probability matrix  

is defined using (16) as





 




∞  
∞ 


∞  

∞ 



 

 


 

 


    (11)

  Assuming that a transition occurs at the end of 

each service interval, a new Markovian chain 

(shown in Fig. 5) can be considered. In such a case, 

two states  are newly devised to represent 

service-ending states virtually ( for an ending 

with ↑ and  for an ending with ↑).

  Generally, using the law of total probability,

    
 

(12)

  Due to the memoryless property of a Markov 

chain (including Fig. 5), each service time only 

depends on its initial state, and formally,

′    ′   ′∈.

The pmf for   in (12) can be then rewritten as

    
  

       (13)

Since    is independent on , set to 

 . By applying ′    to (8),










   
 ≥ 

  








   




 ≥ 

   (14)

and, generally,

   
′∈

  ′ 
⋅  ′ 

where   ′   is given by 
 . 

From (11), 
  is given by


 

 


 


 

 
.          (15)

Thus, the   service time   is entirely 

dependent on the initial channel state   at the 

instant at which the delay measurement starts. The 

conditional pmf of the   service time is given by



  
 





 


  
  




.   (16)

2.5 Delay distribution and service probability
  Tthe queueing delay  is the sum of the service 
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times for   data units including the arrival data 

unit. The distribution of   is entirely dependent 

on the starting state  . Let   be the number 

of services starting from the state   and  be the 

number of services starting from the state . For 

  services,    .  then 

becomes

  


 






 




.

The generating function   of  becomes







  .(17)

Since   and  are random variables, (17) becomes

            (18)

where 
  and 


 .   and  can be 

derived simply through the z-transform of (14) as




                         (19)

and

 


.  (20)

  Given a sequence of   services, let 

  be the probability vector, indicating that 

  and  services occur during the   services: 

  

where each column ∈  corresponds 

to the case where the service-sequence ends with S- 

starting service (each sequence ends with B- or 

G-starting service). Using the memoryless property 

of transitions between service-ending states, 

  can be expressed by    and 

 . 

  Suppose the next service transition occurs with 

the B-starting service from   . The 

service sequence probability then becomes 

   
.

Similarly, the service sequence probability from the 

state   with the G-starting service 

becomes

  
.

Then,   becomes



 







 









. (21)

Using (21),   can be recursively derived. 

The pmf     can be obtained by the 

recursive expression with the initial state probability 

 . The generating function can be calculated by

 


 

   ,

and   can be calculated from (18), (19) and 

(20). The pmf of the queueing delay  then 

becomes

   




 .              (22)

The service probability  is then expressed by

  ≤ 




             (23)

where  is the real-time delay constraint.

Ⅲ. RATE CONTROL ALLOCATION 

  A rate control algorithm can be employed to 

obtain the optimal rate using feedback information 

for a given encoding rate and the characteristics of 

the wireless channel. Fig. 6 depicts a transmission 

system in which the current buffer occupancy and 

the channel state information are sent back to the 

encoder side. Utilizing this information, an encoding 

rate can be determined.
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Fig. 6 A rate-controlled real-time video communication 

system.

Fig. 7 The instant receiving rate according to the transmission 
rate.

3.1 Expected channel capacity
  Let   be the maximum channel capacity 

during the delay constant when no channel error 

occurs, and   be the initial channel state 

probability. Let   () be the channel capacity at 

the bad (good) channel state. Then,   and  are 

represented by






















Under the assumption that no channel error 

occurs at the good channel state,    and 

   . The average channel capacity 

at time t is then given by

 









 

The probability that the arrival data unit is delivered 

to the decoder buffer after  slots is represented by 

   . The average channel capacity   for the 

delivery of the data unit to the decoder buffer can 

be written as

 


∞

              (24)

where  is given in (1),   in (2) and     

Generally, ≤≤  and, in the discrete time 

domain, at most one data-unit transmission is 

allowed in a single slot.

3.2 Optimal rate
  Due to the limited channel capacity in (40), the 

data rate delivered to the decoder is limited by

′   ≥
                     (25)

where   is the channel capacity in (24),   is the 

encoding rate and ′  is the data rate delivered to 

the decoder. Fig. 7 shows the instant receiving rate 

as a function of the transmission rate. The optimal 

transmission rate   required to minimize the 

distortion for the given   and ′  can be then 

expressed as 

  ′′                    (26)

where ′  t is the distortion of the reconstructed 

picture at the decoder. 

  Let   be the distortion (rate) at the   

pixel. Suppose that the encoded data for the pixel is 

lost during the transmission. The distortion due to 

the pixel loss can be approximated by    

which is equivalent to the maximum distortion with 

the zero encoding rate. Assume that each picture 

consists of  pixels. Simply, the average distortion 

′  per pixel can be written as

′ 


′ 







 




 

where  is given by
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Fig. 8 The pmf of the delay according to the parameters.

     









 ≤ ≤






  ≥



referring to (25) and   . Assuming that the 

over-delayed data is regarded as lost data, the total 

distortion of the reconstructed picture ′can be 

written as

    ′  
where  is the number of received pixels and   

is the number of lost pixels in a picture 

(  ). The average distortion ′  per pixel 

is given by

′








  ≤ ≤






   ≥

  (27)

Using (27), the distortion per pixel of the Gaussian 

source is then given by 

′








  ≤ ≤








   ≥
 . (28)

Finally, the optimal for constructing a Gaussian 

picture with minimal distortion, satisfying (26), is 

given by


 


                             (29)

and its minimum per-pixel distortion is given by

    ′  





.

Ⅳ. SIMULATION RESULTS

  The formulas derived from the queueing model 

are verified using the Monte Carlo simulation 

method with a repetition time of . It can be seen 

that the pmf plot of the delay  in (34) is in good 

agreement with the simulation result when    

and    in Fig. 8 (a) and (b). In the simulation, 

the channel parameters are set to     and 

   for modeling slow fading channel. Services 

starting from the bad channel state have less chance 

to be successfully completed in the following time 

slots due to the low success probability   . 

This figure also shows that the pmf curve is highly 

dependent on the initial channel state  .

  Fig. 9 shows the service probability  when the 

real-time delay constraint is    (slots) in the 

discrete time domain. When the queue-length is 

small, the service probability is almost one, i.e., the 

service can be completed with a very low 
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Fig. 9 The service probability according to the instant 

channel state and the queue-length.

probability of failure. If the queue-length becomes 

longer than 25, the service probability is decreased 

and has less chance to finish its service within the 

delay budget. Hence, service probability drops with 

increasing queue-length.

Ⅴ. CONCLUSION

  This paper presents a theoretical derivation for 

analyzing queueing behavior by means of delay and 

service distributions over a Gilbert-Elliot burst-noise 

channel. For describing the channel dynamics, the 

two-state Markov-modulated Bernoulli process is 

analyzed for the queueing system. To demonstrate 

the applicability of the analysis, a quality 

maximization problem is treated by utilizing the 

distortion function. The numerical analysis presented 

in this paper has the potential of being utilized for 

solving a variety of QoS optimization problems 

where delay constraints are major QoS factors.
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