

실물에 대한 디지털 홀로그램 고속 생성

정회원 강훈종*, 이강성**, 이승현**

Fast Digital Hologram Generation Using True 3D Object

Hoon-jong Kang*, Gang-sung Lee**, Seung-hyun Lee** Regular Members

요 약

컴퓨터 그래픽 모델로부터 3차원 정보를 쉽게 추출할 수 있기 때문에, 일반적으로 3차원 컴퓨터 그래픽 모델이 디지털 홀로그래피에 사용되고 있다. 본 논문에서는 depth 카메라를 이용하여 실사로부터 3차원 정보 추출하였고 이를 이용하여 디지털 홀로그램을 생성하였다. Depth 카메라에서 획득된 2차원 실사 영상 및 실물에 대한 깊이 영상은 디지털 홀로그램 생성을 위한 3차원 정보(point cloud) 추출에 사용되었다. 추출된 3차원 정보는 고속 디 지털 홀로그램 생성 알고리즘인 코히어런트 홀로그래픽 스테레오그램 방식을 사용하여 홀로그램을 생성하였고, 생 성된 디지털 홀로그램은 프라넬(Fresnel) 기반 복원 알고리즘에 의해 복원하였다. 본 방법에 의해 실사에 대한 고 속 디지털 홀로그램 생성이 가능함을 제시하였으며, 생성된 디지털 홀로그램으로부터 프라넬 홀로그램의 복원 영 상과 같이 선명한 복원 영상을 얻을 수 있었다.

Key Words : Digital Hologram, True 3D Object, Depth Camera, Fast Digital Hologram Generation, Fresnel Diffraction

ABSTRACT

In general, a 3D computer graphic model is being used to generate a digital hologram as theinput information because the 3D information of an object can be extracted from a 3D model, easily. The 3D information of a real scene can be extracted by using a depth camera. The 3D information, point cloud, corresponding to real scene is extracted from taken image pair, a gray texture and a depth map, by a depth camera. The extracted point cloud is used to generate a digital hologram as input information. The digital hologram is generated by using the coherent holographic stereogram, which is a fast digital hologram generation algorithm based on segmentation. The generated digital hologram using the taken image pair by a depth camera is reconstructed by the Fresnel approximation. By this method, the digital hologram corresponding to a real scene or a real object could be generated by using the fast digital hologram generation algorithm. Furthermore, experimental results are satisfactory.

I.서 론

홀로그래피는 자연스러운 3차원 디스플레이라고 불리며, 이를 기반으로 하는 전자 홀로그래픽 디스 플레이 기술은 여러 연구실에서 폭넓게 연구되고 있다^{[1]-[4]}. 전자 흘로그래픽 디스플레이 시스템은 다 양한 기술들이 집약되며, 그 예로써, 3차원 정보 획 득, 디지털 홀로그램 고속 생성, 공간 광변조, 광학 기반 디스플레이 등이 있다. 본 논문은 이중에 두 가지 기술 분야에 관한 것으로써, 3차원 정보 추출

※ 본 연구는 지식경제부 및 정보통신산업진흥원의 IT산업원천기술개발사업[2009-F-208-01]과 대학 IT 연구센터 지원사업 [NIPA-2009-C1090-0902-0018]의 일환으로 수행되었습니다.

^{*} Bilkent University(hoonjongkang@hotmail.com), ** 광운대학교(shlee@kw.ac.kr)

논문번호 : KICS2009-08-360, 접수일자 : 1998년 8월 17일, 최종논문접수일 : 2009년 11월 9일

및 디지털 흘로그램 고속 생성에 대한 방법을 다루 었다.

일반적으로 3차원 컴퓨터 그래픽 모델이 디지털 홀로그래피에 활용되고 있으며, 특히 디지털 홀로그 램을 생성 및 디스플레이에 일반적으로 이용되고 있다. 그 이유는 3차원 모델로부터 3차원 정보(point cloud)를 쉽게 추출 할 수 있기 때문이며, 3차원 정 보를 구성하는 각각의 포인트는 자체 발광 포인트 로 여겨질 수 있기 때문이다. 또한 실사에 대한 3 차원 정보를 추출하는 것이 쉽지 않은 것도 그 이 유로 작용하고 있다. 최근에 실사에 대한 3차원 정 보를 추출 할 수 있는 방법이 개발되고 있다. 그 중 실사 영상 및 깊이 영상을 출력하는 depth 카메 라가 대표적인 예이다^{[5], [6]}.

Coherent holographic stereogram(CS)은 고속 디 지털 홀로그램 생성 알고리즘이다. CS는 홀로그램 평면의 분할 및 역 푸리에 변환(inverse fast Fourier transform)을 이용하는 방법으로써, 계산 량을 대폭 감소시킴으로써 고속화를 실현하였다. 또한 위상정 보를 이용함으로써 프라넬 홀로그램처럼 선명한 복 원 특성을 갖는다. CS의 기본 알고리즘은 phaseadded stereogram(PAS) 이며, 화질 향상을 위해 다 양한 버전으로 발전해 왔다^{[7]-[13]}. Compensated phase-added stereogram(CPAS) 및 accurate phaseadded stereogram(APAS)의 두 가지 생성 알고리즘 을 포함하는 accurate compensated phase-added stereogram (ACPAS)는 고속 연산이 가능하며, 기 존 버전과 비교하여 프라넬 홀로그램의 복원 영상 과 가장 유사한 선명한 복원 특성을 갖는다는 장점 을 가지고 있다^{[13], [14]}. ACPAS 생성 알고리즘은 Fraunhofer 회절의 수학적 모델에서 유도된 알고리 즘이기 때문에, Rayleigh-Sommerfeld(RS) 생성 알 고리즘에 의해 생성된 홀로그램처럼 완벽한 복원 영상을 제공하지는 못하지만, ACPAS 홀로그램의 복원 영상은 RS의 복원 영상과 유사하며, 낮은 노 이즈 레벨^{[14], [15]} 및 고속 생성의 장점을 가지고 있 다. 본 논문에서는 실사에 대한 3차원 정보를 추출 하기 위하여 depth 카메라를 영상 획득 시스템으로 이용하였으며, 선명한 복원 특성을 갖는 ACPAS 알 고리즘을 고속 디지털 홀로그램 생성 알고리즘으로 이용하였다.

Ⅱ. 3차원 정보 획득 시스템

본 논문에서는 depth 카메라로 3DV system사의

Z-Sense 모델을 사용하였다. Time-Of-Flight (TOF) 방법이 적용된 Z-Sense는 카메라와 객체간의 거리 에 따라 그레이 레벨로 깊이 정보를 표현하며, 최저 1cm의 깊이 해상도로 깊이 정보를 획득하여 실시간 으로 객체에 대한 칼라 실사 영상 및 깊이 영상을 제공한다. 거리 정보를 산출하기 위해 광원으로 적 외선 LED를 사용한다. 출력 영상은 320 × 240 해 상도로써, RGBD(red, green, blue, depth) 4채널에 대한 영상을 초당 30 프레임으로 출력한다. 이에 대한 간단한 개념도를 그림 1에 나타내었다.

본 실험에서 사용된 카메라에 의해 획득된 실사 영상 및 깊이 영상을 그림 2에 나타내었다. 비록 해상도는 낮지만, 기존의 가능한 공간 광변조기의 해상도가 4K × 2K 이하인 것을 고려한다면, 전자 홀로그래픽 디스플레이를 위한 격자 패턴(fringe pattern)을 생성하는데 입력 정보로써 적합한 해상도 이다.

그림 2에서와 같이 획득된 실사 및 깊이 영상을 이용하여 3차원 정보를 추출하였다. 깊이 영상은 카 메라와 실물간의 거리에 따라 그레이 레벨로 표현 된다. 밝은 부분은 거리가 가까운 것을 의미하며,

그림 1. Depth 카메라를 이용한 실사 및 깊이 영상 획득 Fig. 1. Depth and color image acquisition using a depth camera

그림 2. Depth 카메라에 의해 획득된 영상 Fig. 2 Achieved image from a depth camera

어두울 수 록 거리가 멀어지는 것을 의미한다. 이러 한 특성을 이용하여 깊이 영상으로부터 사물에 대 한 깊이 정보를 추출 할 수 있다. 또한 칼라 영상 은 실물로부터 반사된 빛의 특성이 기록된 것으로 써, 사물의 칼라별 진폭 값 및 2차원 평면상에서의 위치 값을 알 수 있다. 따라서 실물에 대한 실사 영상 및 깊이 영상을 이용하여 3차원 정보를 추출 할 수 있다. 2차원 영상은 제한된 해상도를 가지며. 각각의 픽셀이 사물에 대한 포인트로 간주가 가능 하므로, 실사 컬러 영상으로부터 3차원 포인트 정보 를 구성하는 칼라별 진폭 값 및 포인트에 대한 x, y 축에서의 좌표 값을 추출할 수 있다. 또한 깊이 영 상은 카메라로부터 실물간의 거리 정보를 그레이 레벨로 표현을 했기 때문에, z 축에서의 좌표 값 추 출이 가능하다. 이와 같이 디지털 홀로그램 생성에 필요한 3차원 정보 즉, 3차원 좌표 값 및 칼라 진 폭 값 (x, y, z; r, g, b)을 얻을 수 있으며, 이에 대한 과정을 그림 3에 나타내었다.

그림 3. 획득된 영상으로부터 3차원 정보 추출 및 디지털 흘 로그램 생성 Fig.3 3D information extraction and digital hologram

generation from an achieved image

Ⅲ. 디지털 홀로그램 생성 알고리즘

CPAS, APAS 그리고 ACPAS는 PAS의 향상된 버전이다. CPAS는 산출된 연속 공간 주파수 공간 에서의 공간 주파수를 이산 공간 주파수 공간에 매 핑을 할때 발생되는 오차를 위상으로 보상하는 방 법이며, APAS는 세그먼트 사이즈보다 큰 IFFT 사 이즈를 이용함으로써, 이산 공간 주파수 공간에서의 샘플링 오차를 줄여주는 방법이다. 마지막으로 ACPAS는 CPAS의 계산 방법과 APAS의 계산 방 법을 이용함으로써 복원 영상의 화질을 향상한 방 법이다.

고속 푸리에 변환은 고속 처리를 요구하는 다양 한 분야에서 활용되고 있다. PAS 또한 고속 생성을 위해 역 푸리에 변환을 이용함으로써 연산 시간을 감축시킬 수 있다. PAS는 여러 개의 세그먼트로 구 성되어 있으며, 각각의 세그먼트는 공간 주파수 성 분과 위상 성분을 갖는다. 예로써, 단일 포인트에 대해 고려할 경우. 단일 포인트에 대한 공간 주파수 및 위상 성분은 각각의 세그먼트에 설정이 되며, 이 에 대한 역 푸리에 변환의 결과는 단일 공간 주파 수 성분을 갖기 때문에 위상을 갖는 단일 코사인 파형을 갖게 된다. 이때 세그먼트 내에서의 단일 포 인트 위치는 공간 주파수 도메인에서의 공간 주파 수 값을 의미하게 된다. 하지만, 역 푸리에 변환을 이용하게 됨으로써, 공간 주파수 도메인은 이산 공 간 주파수 도메인이며, 공간 주파수 산출 수식에 의 해 산출 된 공간 주파수 값을 이산 공간 주파수 도 메인에 매칭을 시킴으로써 오차가 발생하게 된다. 이때 이산 공간 주파수 공간에서의 샘플링 간격은 세그먼트 사이즈에 의해 결정되며, 이산 공간 주파 수 도메인에서의 이산 공간 주파수의 개수는 세그 먼트의 픽셀 수에 의해 결정되어진다. 주파수 도메 인의 (1, 1)에 대한 역 푸리에 변환의 결과는 대각 선 방향으로 분포되는 코사인 파형이다. 이 간격은 세그먼트의 픽셀 수에 의해 정의된다. 따라서 기본 공간 주파수(fundamental spatial frequency) f_{FSF}는 다음 수식에 의해 산출 되어 질 수 있다.

$$f_{FSF} = \frac{1}{T_{FP}} = \frac{1}{\Delta S} = \frac{1}{\Delta P * N_s}$$
(1)

여기에서, *T_{FP}*는 기본 주기, Δ*S* 는 세그먼트 크 기, Δ*P* 는 격자 패턴의 픽셀 피치, 그리고 *N_s*는 세 그먼트의 픽셀 개수를 나타낸다. 산출된 공간 주파 수에 대한 이산 공간 주파수 도메인에서의 좌표 값은

$$\xi_{\text{int}} = \text{integer} \left(f_{p\xi c} / f_{FSF\xi} \right)$$
(2)

및

$$\eta_{\rm int} = {\rm integer} \left(f_{p\eta c} / f_{FSF\eta} \right) \tag{3}$$

에 의해 산출 된다. 여기서 f_{pxc} 와 f_{phc} 는 *ξ*와 η 축 각각의 공간 주파수, 그리고 ξ_{int} 와 η_{int} 는 해당 하는 세그먼트에서의 수평 수직 좌표 값이다. 공간 주파수 \int_{pxc} 와 f_{phc} 는

$$f_{p\xi} = \left(\sin\theta_{p\xi} - \sin\theta_{\xi}\right) / \lambda \tag{4}$$

(5)

(6)

$$f_{\rm res} = (\sin\theta_{\rm res} - \sin\theta_{\rm res})/\lambda$$

에 의해서 산출되며, 여기에서 θ_{psc} 와 θ_{stefle} *§* 축 의 물체빔(object beam)과 참조빔(reference beam) 의 입사각이고, θ_{pnc} 와 θ_{nrefle} *n* 축의 물체빔과 참 조빔의 입사각이다. 공간 주파수 도메인이 이산 도 메인이기 때문에, 산출된 공간 주파수의 위치는 이 산 값을 갖는다. 따라서 역 푸리에 변환을 이용하지 않는 연속 공간 주파수 공간을 이용하는 PAS 생성 방법 보다 노이즈가 증가하게 된다. 이는 공간 주파 수 도메인에서의 매핑 오차가 그 원인이 된다. 하지 만, 위상 보정 방법을 이용하여 매핑 오차에 의해 발생 되어지는 노이즈를 감소시킬 수 있다. 위상 보정 수식은

및

와

$$C_{\eta} = j2\pi \left(f_{p\eta c} - f_{p\eta cint} \right) \tag{7}$$

에 의해 표현되며, 여기에서 *C*_{\$}와 *C*_{\$}는 *\$*와 ^ŋ축 에 대한 위상 보정 값을 나타낸다.

 $C_{\xi} = j 2\pi \left(f_{n\xi_{c}} - f_{n\xi_{cint}} \right)$

세그먼트의 중앙에서의 공간 주파수 및 위상 값 은 PAS를 구성하는 세그먼트를 계산 하는데 사용 되어 진다. 이때, CPAS는 공간 주파수 도메인에서 의 매평 오차에 의해 발생되는 노이즈를 위상 보정 방법에 의해 감소시키는 방법이며, 다음 수식에 의 해 나타내어 질 수 있다.

$$\mathbf{I}_{CPAS}(\xi,\eta) = \sum_{p=1}^{N} \frac{a_p}{r_p} \exp\left\{j 2\pi \left[\left(\xi - \xi_c\right) f_{p\xi \text{cint}} + \left(\eta - \eta_c\right) f_{p\eta \text{cint}} \right] + jkr_p + C_{\xi} + C_{\eta} \right\}$$
(8)

여기에서 N은 3차원 오브젝트를 구성하는 포인 트의 개수를 의미하며, 파형의 개수인 k는 k=2π/λ 로 정의 된다. 여기서 λ는 빛의 파장을 말한다. p번 째 포인트의 한 점과 홀로그램 상의 한 지점 (ξ , η)사이의 간격 γ_{ρ} 는 $[(\xi - x_{\rho})^{2} + (\eta - y_{\rho})^{2} + z_{\rho}^{2}]^{1/2}$ 로 결정 된다. 공간 주파수 $f_{p\xi cint}$ 과 $\int_{p\eta cint} = \int_{p\xi cint} f_{BSF\eta}$ 으로 각각 결정 된다.

APAS는 세그먼트 사이즈보다 큰 역 푸리에 변 환 사이즈를 이용함으로써 복원 영상의 화질을 향 상 시킨다. 이는 세그먼트 사이즈보다 큰 역 푸리에 변환 사이즈를 이용하여 이산 공간 주파수 공간에 서의 샘플링 간격을 줄여줌으로써 매핑 에러를 줄 여주기 때문이다. 적합한 세그먼트 사이즈 ΔS는 ΔS ≤ (Δf)⁻¹에 의해 결정될 수 있다^{[9-[12]}. 여기에서 △f는 인접 세그먼트 간의 공간 주파수 차이 이다. 이 방법에 의해 선명한 복원 화질을 갖는 격자 패 턴 생성이 가능하지만, 세그먼트 사이즈의 수배에 해당하는 역 푸리에 변환 사이즈를 이용할 경우 CPAS에 비해 계산 속도가 너무 느려진다는 단점이 있다. 따라서 역 푸리에 변화 사이즈는 컴퓨팅 시스 템 및 응용에 따라 달라질 수 있다. ACPAS는 CPAS 및 APAS의 장점을 포함하는 것으로서, 계산 속도 향상 및 고화질의 복원 영상을 얻을 수 있다^{[13], [14]}.

Ⅳ. 실험 및 결과 고찰

Depth 카메라를 이용하여 실물에 대한 실사 영 상 및 깊이 영상을 획득 하였고, 이로부터 3차원 좌표를 추출하여 디지털 홀로그램을 생성하였다. 본 시뮬레이션에서 사용된 파라미터는 표 1과 같다.

카메라로 획득된 영상으로부터 디지털 홀로그램 생성에 사용할 수 있도록 3차원 좌표 값 및 각각의

디지털 홀로그램	해상도	1024 × 1024 pixels
	세그멘트 사이즈	64×64 pixels
	픽셀 간격	10.4 µm
	사물과 홀로그램 간의 기본 거리	500 mm
	파장	633 nm
깊이 영상	해상도	320×240 pixels
	그레이 레벨	0 - 255
컴퓨팅 시스템	CPU	Intel(R) Xeon(R) CPU 2GHz
	메인 메모리	4G Byte

표 1. 시뮬레이션 환경

포인트에 대한 칼라 진폭 값을 추출 하였으며, 전체 포인트의 수는 67,821이다, 그림 4는 RGB 채널 중 Green 채널에 추출된 포인트에 대한 포인트 클라우드 들 (point cloud) 영상이다. 추출된 포인트 클라우드 를 이용하여 ACPAS 및 프라넬 알고리즘에 의해 생성된 격자 패턴을 그림 5에 나타내었으며, 프라넬 기반 복원 알고리즘에 의해 복원된 영상을 그림 6 에 나타내었다. 그림 6에 나타낸 바와 같이 두개의 복원 영상은 비슷한 복원 화질을 갖지만, 계산속도 면에서는 크게 다르다. 표 1과 같은 CPU 기반 컴 퓨팅 환경에서 ACPAS의 연산 속도는 프라넬 접근 방식 보다 1,000배 빠르다. 따라서 실물에 대한 3차 원 정보를 이용하여 전자 흘로그래픽 디스플레이 시스템에 의해 흘로그램을 디스플레이 할 때, 실시 간 처리를 위하여 프라넬 흘로그램과 같이 선명한

 (a) 정면
 (b) 대각선 측면
 (c) 아래면

 그림 4. RGB 및 깊이 영상으로부터 추출된 3차원 포인트 클라우드
 특징 4 3D point cloud extracted from RGB and depth image

(a) 프라넬 홀로그램그림 5. 생성된 디지털 홀로그램Fig. 5 Generated Digital Hologram

(a) 프라넬 흘로그램(b) ACPAS그림 6. 디지털 흘로그램의 복원 영상Fig. 6 Reconstruction image from digital hologram

복원 영상을 얻을 수 있었고, 고속 생성이 가능한 ACPAS가 디지털 흘로그램 생성 알고리즘으로써 적합함을 보여주었다.

V.결 론

본 논문에서는 실물에 대한 3차원 정보 추출 및 추출된 정보를 이용하여 디지털 홀로그램을 고속으 로 생성하는 과정을 보여주었다. 이를 위해 범용의 depth 카메라를 이용하여 사물에 대한 실사 영상 및 깊이 정보를 얻을 수 있었고, 획득된 영상으로 부터 사물에 대한 포인트 클라우드를 구성할 수 있 는 포인트 정보, 3차원 좌표 값 및 칼라별 진폭 값 (x, y, z; r, g, b)을 추출하였다. 그리고 추출된 3차원 정보를 이용하여 디지털 홀로그램을 생성하였다. 디 지털 흘로그램은 프라넬 흘로그램과 유사한 복원 화질을 가지며, 고속 생성이 가능한 ACPAS를 디지 털 홀로그램 생성 알고리즘으로 이용하였다. 이와 같은 방법으로 실물에 대한 고속 디지털 흘로그램 생성이 가능함을 나타내었고, ACPAS가 향후 고속 생성 및 고화질의 특성을 갖는 전자 홀로그래픽 디 스플레이 시스템에 적합함을 확인할 수 있었다.

참 고 문 헌

- Hilaire, P. S., Benton, S., Lucente, M., and Hubel, P., "Color images with the mit holographic video display," in Practical Holography VI, Vol.1667, pp.73, Proc. SPIE, 1992.
- [2] Stanley, M., Smith, M. A., Smith, A. P., Watson, P. J., Coomber, S. D., Cameron, C. D., Slinger, C. W., and Wood, A. D., "3d electronic holography display system using a 100 mega-pixel spatial light modulator," in Optical Design and Engineering, Vol.5249, pp.297-308, Proc. SPIE, 2004.
- [3] R. Häussler, A. Schwerdtner, N. Leister, "Large holographic displays as an alternative to stereoscopic displays," Proc. SPIE, Vol.6803, pp.68030M.1-68030M.9, 2008.
- [4] Yamaguchi, T., Okabe, G., and Yoshikawa., H., "Real-time image plane full-color and fullparallax holographic video display system," Optical Engineering, Vol.46, pp.125801-8,

2007

- [5] G.J. Iddan and G. Yahav,"3D imaging in the studio(and elsewhere...), Proc. of SPIE, Vol.4298, pp.48-55, 2001
- [6] R.Gvili, A.Kaplan, E.Ofek and G.Yahav,"Depth keying", SPIE Electronics Imaging Conference Santa Clara, California, 2003
- [7] Yamaguchi, M., Hoshino, H., Honda, T., and Ohyama, N., "Phase-added stereogram: calculation of hologram using computer graphic technique," in Practicalholographic VII, Benton, S. A., ed., Vol.1914, pp.25-33, Proc. SPIE, 1993.
- [8] Yoshikawa, H. and Kameyama, H., "Integral holography," in Practical Holography IX, vol.2406, pp.226-234, Proc. SPIE, 1995.
- [9] Tamai, J. and Yoshikawa, H., "Faster computation of subsampled coherent stereogram (in japanese)," Journal of ITEJ Vol.50, pp.1612-1615, 1996.
- [10] Kang, H., Fujii, T., Yamaguchi, T., and Yoshikawa, H., "Compensated phase-added stereogram for real-time holographic display," Optical Engineering, vol. 46, 2007.
- [11] Kang, H., Yamaguchi, T., and Yoshikawa, H., "Accurate phase-added stereogram to improve the coherent stereogram," Appl. Opt., 47, pp.44-54, 2008.
- [12] Kang, H., "Quality Improvements of the Coherent Holographic Stereogram for Natural 3D Display and Its Applications", Ph. D. Thesis, Nihon University, Japan, 2008.
- [13] Kang, H., Yaras, F., Onural, L., and Yoshikawa, H., "Real-time fringe pattern generation with high quality," in Digital Holography and Three-Dimensional Imaging, DTuB7, OSA meeting, 2009.
- [14] Hoonjong Kang, Fahri Yaras, Levent Onural, "Quality comparison and acceleration for digital hologram generation method based on segmentation," 2009 3DTV-Conference: The True Vision Capture, Transmission and Display of 3D Video, pp.1-4, May 2009.
- [15] Hoonjong Kang, Fahri Yaras, Levent Onural, "Graphics unit accelerated processing

computation of digital holograms," Appl. Opt. Vol.48, pp.H137-143, 2009.

강 훈 종 (Hoon-jong Kang)

정회원 1994년 2월 광운대학교 전자 공학과 2001년 2월광운대학교 전자 공 학과 석사 2008년 2월 일본대학교 전자 공학과 박사 2002년~2006년 한국전자통신

연구원 연구원

2008년 3월~현재 빌켄트대학 전기전자공학과 Post-Doc <관심분야> 홀로그래픽 프린팅, 컴퓨터형성 홀로그 램, 디지털 홀로그래피

정회원 이 강 성 (Gang-sung Lee) 1986년 2월 광운대학교 컴퓨터 공학과 졸업 1988년 2월 광운대학교 컴퓨터 공학과 석사 1992년 2월 광운대학교 컴퓨터 공학과 박사 1991년~현재 광운대학교대학 원 정보디스플레이학과 교수

<관심분야> 신호처리, 음성인식, 미디어아트, 예술 공학

이 승 현 (Seung-hyun Lee)

정회원 1984년 2월 광운대학교 전자공 학과 졸업 1986년 2월 광운대학교 전자공 학과 석사 1993년 2월 광운대학교 전자공 학과 박사 1992년~현재 광운대학교대학원

정보디스플레이학과 교수 <관심분야> 3D 디스플레이, 디지털 흘로그래피