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ABSTRACT

Hochwald et al. introduced unitary space-time codes for quasi-static Rayleigh fading channels which allows for 

noncoherent decoding when the channel response is not known at the receiver. However, when reliable 

information on the channel response is available, coherent decoding is preferable for improved performance. Here, 

we study the relationship between the performance criteria on the diversity and coding advantages provided by 

unitary space-time codes with noncoherent and coherent decoding. We show that when a unitary space-time code 

achieves full spatial diversity with noncoherent decoding, full spatial diversity is also guaranteed with coherent 

decoding.
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Ⅰ. Introduction

A recent approach to obtaining spatial diversity 

over multipath fading channels is to employ 

coding techniques appropriate for multiple transmit 

antennas, namely, space-time coding
[1]-[7]. Tarokh 

et al. in [1] developed design criteria for 

space-time codes under the assumption that the 

channel is known at the receiver. Specifically, the 

rank and determinant criteria for quasi-static 

Rayleigh fading channels quantify the diversity 

and the coding gains of space-time codes, 

respectively. Hochwald et al. in [2], introduced 

unitary space-time codes for quasi-static Rayleigh 

fading channels which allows for noncoherent 

decoding for the case when the channel response 

is not available at the receiver. 

Since the channel environment for a receiver 

may change depending on time and place, the 

assumption that the channel information is always 

either known or unknown at the receiver is 

unrealistic. If reliable channel response becomes 

available at the receiver, coherent decoding may 

be desirable for improved performance. In this 

case, we would at least like to be guaranteed that 

the unitary space-time code in use achieving full 

spatial diversity and maximizing coding advantage 

with noncoherent decoding also achieves full 

spatial diversity and maximizes coding advantage 

with coherent decoding. In this paper, we study 

the relationship between the performance criteria 

on the diversity and coding advantages provided 

by unitary space-time codes under noncoherent 

and coherent decoding. We show that when a 

unitary space-time code achieves full spatial 

diversity with noncoherent decoding, full spatial 
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diversity is also guaranteed with coherent 

decoding.

The remainder of the paper is organized as 

follows. In Section II, the signal model is 

presented and in Section III, we briefly review 

the performance criteria of unitary space-time 

codes for the coherent and noncoherent decoding. 

In Section IV, we show that a unitary space-time 

code achieving full spatial diversity with 

noncoherent decoding also achieves full spatial 

diversity with coherent decoding and conclusions 

are drawn in Section V.

Ⅱ. Signal Model 

We consider a communication system with M 

transmit and N receive antennas under quasi-static, 

frequency flat Rayleigh fading channels. Each 

receive antenna responds to each of the transmit 

antennas through a statistically independent 

channel response, assumed to be constant for T 

symbol periods. Using the complex baseband 

representation, the lowpass equivalent channel 

input-output relationship for such channels can be 

written as





. (1)

Here,  is the × received signal 

matrix with  being the signal received by the 

th receive antenna at time ,  is the 

× transmitted signal matrix with  being 

the signal transmitted on the  th transmit 

antenna at time . The channel coefficient matrix 

 is an × matrix of independent 

and identically distributed (i.i.d.) Rayleigh fading 

coefficients with  being the fading coefficient 

between the  th transmit antenna and the th 

receive antenna. The noise matrix,  is 

the × matrix representing the i.i.d. additive 

receiver thermal noise with  being the thermal 

noise observed by the th receive antenna at time 

. Let   denote a complex Gaussian 

random vsiiable with independent real and 

imaginsianpsits, each with zero mean and 

vsiiaenot. The fading coefficients  are 

assumed to be   and each entian of 

 are also   distributed. The average 

energanof the symbols transmitted from each 

antenna is normalized to be one, i.e., 


 




 . Therefore, the average received 

SNR at each of the receive antennas is . 

 In this paper, we consider unitary space-time 

codes[3] of size   consisting of codewords 

 ,   ⋯ , where  are × 

complex matrices satisfying 
  . Here,  

denotes the conjugate transpose of  and  

denotes the × identity matrix. In the sequel, 

we will identify  with  and use then 

interchangeably.

Ⅲ. Review of the Design Criteria of 
Unitary Space-Time Codes for Coherent 

and Noncoherent Decoding

First, let us briefly review the design criteria 

for unitary space-time codes for the cases when 

the channel coefficient matrix  is either known 

or unknown at the decoder. For simplicity, we 

will refer to the two decoding operations, as 

coherent and noncoherent decoding, respectively.

3.1 Coherent decoding
Most of the previous works on space-time 

codes assume that the channel coefficient matrix 

 is known at the receiver. The following 

provides a quick review of optimal receivers, 

pairwise error probability and the design criteria 

for coherent decoding of unitary space-time 

codes
[2],[3].

When  is known to the decoder, the 

maximum-likelihood (ML) decoder is given as[2] 

  ∈

 







 (2)

www.dbpia.co.kr



논문 / On the Relationship Between the Performance Criteria of Unitary Space-Time Codes with Noncoherent and Coherent Decoding

1147

where ⋯ and  denotes the 

trace of the matrix . The Chernoff bound on 

the pairwise error probability between  and ′ 
takes the form[3]

′≤ 

′′



≈′
 

′
 ≫ 

 (3)

where ′  denotes the rank of the 

difference matrix ′  and  denotes the 

determinant of . The quantity ′  can be 

interpreted as the diversity advantage of the 

corresponding codeword pair. The quantity 

′ , on the other hand, can be interpreted 

as the coding advantage of the corresponding 

codeword pair and is given by[1]

′ ′′†
′ (4)

where † denotes the product of the nonzero 

eigenvalues of . Hence, for large values of , 

the performance of a unitary space-time code 

under coherent decoding is determined primarily 

by the minimum diversity advantage 
 given as


 ≤ ≤ ≠′′  (5)

and the minimum coding advantage 
 given by,




≤ ≤ ≠′ ′ ′ .  (6)

3.2 Noncoherent decoding
Assuming that neither the transmitter nor the 

receiver knows the channel coefficient matrix , 

the ML decoding rule for unitary space-time 

codes is given by[2]

  ∈


. (7)

The Chernoff bound on the pairwise error 

probability between codewords  and ′ is then 

given by
[3]

′≤ 


′′


≈′
 

′
 ≫ 

 (8)

The diversity advantage, ′  is equal to the 

rank of matrix ′′ . Hochwald and 

Marzetta[2] noted that the maximum value of 

′  is , which is achieved when 1 is not 

a singular value of 
′. The coding advantage 

′  is given by[3]

′ ′′†
′  (9)

For large values of , the performance of a 

unitary space-time code under noncoherent 

decoding is again determined mainly by the 

minimum diversity advantage given as


 ≤ ≤ ≠′′   (10)

and the minimum coding advantage given by




≤ ≤ ≠′ ′ ′ . (11)

Hence, for both coherent and noncoherent 

decoding, the important design criteria are to 

maximize the minimum diversity advantages 
 

and 
.

Ⅳ. Relationship of the Performance 
Criteria for Coherent and Noncoherent 

Decoding

Even when a unitary space-time code is 

employed in order to allow noncoherent decoding, 

we may wish to perform coherent decoding at the 

receiver when the channel variation is slow 
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enough to allow accurate channel estimation for 

an extra performance boost. Hence, we need to 

address some basic questions regarding the 

performance of unitary space-time codes optimized 

for noncoherent decoding under coherent decoding. 

We will provide the answer to the most important 

question, i.e., does a unitary space-time code 

achieving full spatial diversity and maximizing 

coding advantage with noncoherent decoding 

guarantee full spatial diversity with coherent 

decoding? We first establish a Lemma that is 

crucial in relating the minimum diversity 

advantages of unitary space-time codes under 

coherent and noncoherent decoding.

Lemma 1: The minimum diversity advantage of 

unitary space-time codes under noncoherent 

decoding can also be written as


 ≤ ≤ ≠′   ′  . (12)

Proof: Let us first consider the following 

× Hermitian matrix





 


 

′
′

 
 ≠′ .

We know from
[8]1)

 that

′′  (13)

The matrix  can also be written as




 


 

′
′

 
  ′   ′    (14)

Moreover, since matrices  and  have 

identical rank[6], we have

1) Suppose that a Hermitian matrix   is partitioned as 




 


 

 
 where   and   are ×  positive definite 

matrices. Then, this matrix   is positive definite and 

    .

   ′   (15)

Combining this with (13), we may rewrite the 

rank of the matrix ′′  as

′′   ′  (16)

Therefore, the minimum diversity advantage of 

unitary space-time codes with noncoherent 

decoding is given by


 ≤ ≤ ≠′   ′   (17)

■

From Lemma 1, it is required that 

  ′   , for all ≠′ , in order to 

achieve full spatial diversity of , which also 

requires ≥ . Assuming that ≥ , and 

armed with this result, the following theorem 

relating the minimum diversity advantages of 

unitary space-time codes under coherent and 

noncoherent decoding is easily shown.

Theorem 1: If a unitary space-time code with 

noncoherent decoding achieves full spatial 

diversity, i.e., 
 , then it also guarantees full 

spatial diversity under coherent decoding, i.e., 


 , when the channel response is available 

at the receiver.

Proof: Assume that a given unitary space-time 

code  consisting of   codewords under 

noncoherent decoding achieves full spatial 

diversity. Then,   ′  , for all 

≠′ , which requires that the columns of  and 

′ are linearly independent for ≠′ . Full spatial 

diversity under coherent decoding, on the other 

hand, is guaranteed if the columns of the matrix 

′   ′ ⋯ ′  are linearly 

independent which is trivially satisfied if  ′   
has full rank. Hence, the given unitary space-time 

code achieves full spatial diversity under coherent 

decoding when the channel response is available 
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at the receiver.       ■

An alternate proof of Theorem 1 is possible 

following the results of [5]. 

Alternate proof: With noncoherent decoding, the 

diversity advantage is given by [5], where

≤ ≤ ≠′
∩′

 (18)

Here,   denotes the subspace spanned by the 

columns of  and   denotes the 

dimension of  . Since , we need 

∩′  for  to equal . This in 

turn requires the columns of  and ′ to be 

linearly independent which again implies linear 

independent of the columns of ′.       ■

Next, we relate the coding advantage of a 

unitary space-time code under coherent and 

noncoherent decoding. Suppose that a given 

unitary space-time code  with   codewords 

under noncoherent decoding achieves full spatial 

diversity. Then, the coding advantage between 

codewords  and ′ under noncoherent decoding 

is given by 

′′

 





′ 


 (19)

where ≤ ′ ≤⋯≤′ ≤  are the singular 

values of the 
′[2]. Hence, in order to 

maximize the coding advantage, we need to 

minimize the singular values ′,  ⋯ 

which are all less than 1.

Theorem 2: Let  be a given unitary space 

-time code achieving full spatial diversity and 

maximizing the coding advantage under noncoherent 

decoding. Suppose that 
′ ′ for 

 ′∈⋯, ∀≠′ . Then,  also 

maximizes the coding advantage under coherent 

decoding.

Proof: The coding advantage of the code with 

coherent decoding is given by

 ′′


 ′


 




′


 (20)

where ′ ≤⋯≤′ are the singular values of 

′. Since 
′ ′, ′  ′, 

 ⋯. Then, the coding advantage of  

under coherent decoding can be written as

 ′′


 




′



 (21)

By Lemma 2, if 




′ 


 is maximized, 

then 




′


 is also maximized. 

Therefore, the coding advantage of  under 

coherent decoding is maximized.        ■

In addition, since ≤ ′ ≤⋯≤′ ≤ [2], 

we have




′ 
′ 



 




′
 



≥  

from (19) and (21). Thus, we have






′


≥ 




′ 


 (22)

Therefore, the coding advantage under coherent 

decoding is greater than or equal to the coding 

advantage under noncoherent decoding.

The coding advantage of the code with 

coherent decoding, on the other hand, is given by
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 ′′

 





′ 


 (23)

where ≤ ′ ≤⋯≤′ ≤  are the singular 

values of ′[2]. Hence, for coherent decoding, 

we wish to maximizing the singular values ′, 

 ⋯. In general, there is no direct 

relationship between the singular values ′ and 

′. However, for , ′  ′ and 

′  ′′  which implies 

that ′ ≤ ′ ≤′ [2]. For the 

special case ′ ⋯′  , then 

′ ⋯′  .

Ⅴ. Conclusions

In this paper, we studied the relation between 

the performance criteria on the diversity gain with 

coherent and noncoherent decoding of unitary 

space-time codes. From our study, we knew the 

fact that a unitary space-time code with full 

spatial transmit diversity under noncoherent 

decoding also guarantees full spatial transmit 

diversity under coherent decoding.
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