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THE METHOD OF NONFLAT TIME EVOLUTION (MONTE) 

IN PDE-BASED IMAGE RESTORATION

Youngjoon Cha , Seongjai Kim* 

ABSTRACT

This article is concerned with effective numerical techniques for partial differential equation (PDE)-based image 

restoration. Numerical realizations of most PDE-based denoising models show a common drawback: loss of fine 

structures. In order to overcome the drawback, the article introduces a new time-stepping procedure, called the 

method of nonflat time evolution (MONTE), in which the timestep size is determined based on local image 

characteristics such as the curvature or the diffusion magnitude. The MONTE provides PDE-based restoration 

models with an effective mechanism for the equalization of the net diffusion over a wide range of image 

frequency components. It can be easily applied to diverse evolutionary PDE-based restoration models and their 

spatial and temporal discretizations. It has been numerically verified that the MONTE results in a significant 

reduction in numerical dissipation and preserves fine structures such as edges and textures satisfactorily, while it 

removes the noise with an improved efficiency. Various numerical results are shown to confirm the claim.
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Ⅰ. INTRODUCTION

Image restoration is an important image 

processing (IP) step for various image-related 

applications and is often necessary as a 

pre-processing for other imaging techniques such 

as segmentation, registration, and compression and 

visualization. Thus image restoration methods have 

been considered as an important process in IP, 

computer graphics, and their applications
[1,2,3,4]

.

There have been lots of partial differential 

equation (PDE)-based models in image restoration 

such as the Perona-Malik model
[5]

, the total variation 

(TV) minimization
[6,7]

, and color restoration models
[8,

9,10]
. These PDE-based models have been 

extensively studied to answer fundamental questions 

in image restoration and have allowed researchers 

and practitioners not only to introduce new 

mathematical models but also to analyze and 

improve traditional algorithms
[11, 12, 13]

. Good 

references to work on them are e.g. Aubert- 

Kornprobst
[14]

, Osher-Fedkiw
[15]

, and Sapiro
[4]

.

However, most of these PDE-based restoration 

models and their numerical realizations show a 

common drawback: loss of fine structures. In 

particular, they often introduce an excessive and 

undesirable numerical dissipation on regions where 

the image content changes rapidly such as on edges 

and textures. Therefore it is very important and 

challenging to develop mathematical models and 

numerical techniques which can effectively preserve 

fine structures during the restoration. Although there 

have been developed new mathematical models for 

a better preservation of fine structures[2, 16], more 
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advanced strategies have yet to be developed.

In order to effectively suppress the numerical 

dissipation, this article employs a new time-stepping 

procedure, called the method of nonflat time 

evolution (MONTE), in which the timestep size is 

determined locally depending on image 

characteristics such as the curvature and the 

diffusion magnitude. As observed in Section 3 

below, diffusion terms in PDE-based restoration 

models tend to impose an extravagant dose of 

diffusion near fine structures, which in turn 

introduces a higher level of numerical dissipation 

there. The MONTE controls the timestep size   to 

equalize the net diffusion over a wide range of 

image frequency components; the MONTE sets   

smaller on the regions where the diffusion 

magnitude is larger. Thus the MONTE can be 

viewed as a diffusion equalization technique. This 

new strategy evolves the pseudo-time through 

nonflat surfaces and is able to significantly reduce 

numerical dissipation particularly near fine 

structures.

An outline of the paper is as follows. In the next 

section, we first introduce a general denoising model 

representing diverse PDE-based restoration models 

and then present a brief review of the total variation 

(TV)-based models, followed by an efficient 

numerical algorithm for the general denoising 

model. Section 3 discusses the MONTE in detail. In 

the same section, the net diffusion (ND) function is 

defined to represent the total diffusion resulted from 

the application of the MONTE. Section 4 shows the 

stability of the MONTE using the maximum 

principle; it does not introduce local extrema having 

values outside the range of the noisy image. Section 

5 contains numerical experiments for the MONTE. 

Four models are compared for their effectiveness (in 

terms of visual verification and PSNR analysis) and 

efficiency, for various synthetic and real images. 

The MONTE results in a significant reduction in 

numerical dissipation for all images we have tested. 

The last section concludes our development and 

experiments.

Ⅱ. PRELIMINARIES 

This section begins with the introduction of a 

general denoising model which represents various 

popular restoration models. Then, we present a brief 

review of the TV-based models, followed by an 

efficient numerical algorithm for the general model.

2.1. A general denoising model
Let   be the observed image of the form

  (1) 

where  is a desired image and  denotes noise or 

the residual. Then, most PDE-based image denoising 

models can be formulated in their evolutionary form 

as

 

    (2)

where   is a nonlinear diffusion operator and  

denotes a nonnegative constraint term. For example, 

the Perona-Malik (PM) model[5], the TV model[7], 

the improved total variation (ITV) model
[6]

, and the 

 (ABO) model[9] can be expressed as (2) with  

the following choices:

(a)
 ∇⋅∇∇    (PM)

(b)       (TV)

(c)   ∇  ∇  (ITV)

(d)   ∇    x  (ABO)

(3)

where    ,  ≥  ,  ≥   are constants and 

 and   are functions of the form

       ∇⋅∇
∇   ≥ 

(4)

       



   

Here   is a nonnegative function of   and  ; 

see [9] for an automatic and yet effective strategy of 

choosing a variable constraint parameter. The ABO 

model has been applied as an effective edge-forming 

method for image zooming which incorporates large 

and non-integer magnification factors[17, 18, 19].   
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In the following, we present a brief review of the 

TV-based models, as examples of the general model 

(2). 

2.2. The TV-based models
A common denoising technique is to minimize 

a functional of gradient, given as

                arg min  (5)

where

           


∇x 



Here  and ⋅ denotes the  -norm. When 

  , the first term in   is called the total 

variation (TV). By applying the variational 

calculus[20], one can transform the minimization 

problem (5) into an equivalent differential 

equation, called the Euler-Lagrange equation:

          ∇⋅∇
∇  


   (6)

For a convenient numerical simulation of (6), we 

parametrize the energy descent direction by an 

artificial time ; the resulting evolutionary 

Euler-Lagrange equation can be formulated as:

         


∇⋅∇

∇  

 (7)

Note that the restored image becomes closer to  as 

 grows. We adopt the no-flux boundary condition, 

for simplicity, hereafter; the initial value of  is .

An interesting case in (7) is when   , the TV 

model:

           


∇⋅∇

∇  

 (8)

Although the TV model pertains certain attractive 

mathematical properties in image restoration, its 

numerical realization introduces a large numerical 

dissipation near fine structures. It is also known that 

the TV model tends to transform the image into a 

collection of locally constant portions, which is 

called the staircasing. The removal of staircasing 

has been an interesting research topic. As an 

anti-staircasing approach, Marquina and Osher
[6] 

introduced the improved total variation (ITV) model

     


 ∇∇⋅∇

∇ ∇ (9)

The above model can be derived by scaling the 

stationary TV model, (6) with   , by a factor of 

∇ and then introducing the time parametrization. 

The scaling can suppress the staircasing effectively, 

as indicated in [15]; for its ability to reduce 

numerical dissipation, see Remark 1 in Section 3 

below.

2.3. The numerical algorithm
For a numerical discretization, we let  be a 

prescribed timestep size and let    and 

 ⋅  . Then, an incomplete (linearized) 

Crank-Nicolson scheme for the general model (2) 

reads




 


 (10)

where     is the diffusion matrix which can 

be defined depending on the selected model. For 

example, for the ABO model, one can set 

 
    

   
  

 (11) 
 

and


 ∇








∇




 




(12) 

for      and     . Here 




 is the half-step central difference 

operator for the gradient ∇  and ∇
   

denotes a numerical approximation of gradient 

magnitude ∇  such as the (standard) 

second-order central scheme. The linear system  

(10) may be solved by directly applying an 

iterative algebraic solver. However, it can be 

perturbed in order to apply the alternating 

direction implicit (ADI) time-stepping procedure
[21,

22]
:

www.dbpia.co.kr



한국통신학회논문지 '12-11 Vol.37A No.11

964




    



  

    
 




     



    

(13) 

where   is an intermediate solution.

In this article we will call (13) the  

Crank-Nicolson ADI (CN-ADI) algorithm.

Ⅲ. The METHOD OF NONFLAT TIME 
EVOLUTION (MONTE)

In this section, we will introduce the MONTE, as 

a time-stepping procedure, for the general model (2). 

We begin with an observation for sources of 

numerical dissipation.

3.1. An observation
For simplicity, we momentarily assume that the 

given image   involves no noise such that the 

desired image   is the same as  , i.e.,     

and    . The assumption will help us 

understand why the PDE-based models result in 

more extensive numerical dissipation near fine 

structures.

Utilizing (1), the model (2) can be rewritten as

       

   (14) 

The above equality holds also for the numerical 

residual at the -th time level,     , for 

all ≥  :

    

     (15) 

Thus, since    , the -th residual  , 

≥  , remains zero in regions where,     , 

 ≤ ≤ , while it becomes nonzero otherwise.

Let us discuss it in detail with an example. 

Consider the residual equation for the TV model (8):

   

      

Then, it is not difficult to see that for the TV model, 

the residual becomes positive or negative at pixels 

where the image is concave down or concave up, 

respectively. Thus the numerical solution   of the 

TV model must involve numerical dissipation 

wherever its curvature is nonzero. Furthermore, we 

can reach the conclusion that the TV model (8) 

diffuses the image more actively as the local values 

of the curvature become larger in modulus.

The above conclusion for the TV model can be 

extended to general images and the general model 

(2) as well: the bigger the diffusion magnitude 

   is, the larger numerical dissipation the 

numerical solution   incorporates.

3.2. The MONTE time-stepping procedure
The observation in the previous subsection has 

motivated us to develop the following strategy. In 

the simulation of the model (2) utilizing the 

CN-ADI (13), we try to control the amount of 

diffusion by setting the timestep size   

dynamically, depending on the diffusion magnitude 

for the last iterate     . ((Note that   is 

not available at the beginning of the -th time 

level.) That is, we set  ⋅   as

x   ⋅ x    (16) 

where   is a constant and   is a scaling 

function. For example, we may define   as follows: 

for positive constants   and ,

        


 (17) 

Incorporating (16) into (13), the resulting 

algorithm reads




 

 


  

   
  




 

  


  

  

(18) 
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Fig. 1. The ND function  for certain choices of  
and .

  The numerical solution   in (18) has values on 

different time levels; it is defined on a nonflat time 

surface. The algorithm seeks the solution through a 

nonflat time evolution, for which we call the 

strategy the method of nonflat time evolution 

(MONTE). Concepts of surface evolution can be 

found in various research areas; we refer the reader 

to [23] among others. We will call (18) the  

MONTE-incorporated CN-ADI (M-CN-ADI) 

algorithm.

We close the section with a couple of remarks on 

the MONTE.

Remark 1. A standard numerical realization of the 

ITV model (9), [6] can be viewed as a MONTE 

applied for the TV model (8), with the choice

x   ⋅∇  x (19) 

Thus it can reduce staircasing effectively; however, 

it is hardly concerned with the reduction of 

numerical dissipation.  

Remark 2. Along with the scaling function   in 

(17), the M-CN-ADI (18) applied to (2) can be 

viewed as a numerical realization of the following 

model:







 


 (20) 

Hence, it is clear to see that the resulting algorithm 

must incorporate a total diffusion of the form 

 ,    , as depicted in Figure 1. 

Associated with (20), the residual equation becomes



 


  


  (21) 

We call   the net diffusion (ND) function in 

this article.

Remark 3. It can be verified that the diffusion 

magnitude    on regions of fine structures is 

larger than the average value of the diffusion 

magnitude over the whole domain. Let   denote 

the average value of the diffusion magnitude. When 

the ratio 


 is selected as

                  

 


 

for some      , one can prove that

 ≤  ≤ ⋅

  for  ≥  . (22) 

Thus the net diffusion on oscillatory regions 

(  ≥  ) can differ by a factor of 


. The 

above inequality also implies that by selecting   and 

 appropriately, one can impose diffusion 

equalization over a wide range of the diffusion 

magnitude and therefore the algorithm may hardly 

introduce excessive numerical dissipation near fine 

structures. See (29) below for a choice of   and .

Ⅳ. STABILITY OF THE MONTE

In this section, we presents a stability analysis for 

the MONTE; the conclusion shows that the new 

method do not introduce local extrema having values 

outside the range of the original image.

  Theorem 4.1. Consider the general denoising 

model (2) with the numerical algorithm (10), (11) 

and (12) incorporated with the MONTE algorithm 

described in (16) and (17). Let  supx, 
 sups, and the following condition is 

satisfied.

 
  ≤  (23) 

Then 

min   ≤  ≤ ∞ ≥  (24) 

where 


 is the approximate solution at the pixel 

x  on the time level   and ∞  max  ,
the maximum norm of  .
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             (a)                        (b)

Fig. 2. Lenna: (a) The original image  and (b) a noisy 
image  contaminated by a Gaussian noise (PSNR=24.8).

Proof. Among the models listed in (3), let's consider 

the ABO model first. In that case, we may choose 

        and   x[9]
, and then, use 

the following notation as in [18], i. e.,

    
  


   

  


  




   


   

  


 



(25) 

Here 
 

 and 
  

 can be determined as 

follows:

   
            





      

   

(26) 

where   
  

 is a finite difference 

approximation of ∇   evaluated at x   ,
the mid point of x    and x  . Then, since 


   

    
    

     , the equation 

(11) at a point x   can be written as




   


   







  


   

  
     



 
      

  
     

 




  


    

    
     

  

 
      

    
     

   





 


  

    


  
  

(27) 

where

               
    x     

and

 
    x   ⋅x    . 

Note that  (27) is also true for all the models listed 

in (3), and hence  we may say that (27) is true for 

general model (2). Then, it follows from (23) that 

each of coefficients in the right side of (26) is 

nonnegative and their sum becomes 

 
 

  

. Thus we have the 

desired result.                            

(a) (b) 

(c) (d) 

Fig. 3. Lenna: Restored images  by (a) ITV, (b) ABO, 
(c) M-ITV, and (d) M-ABO. The noisy image is given in 
Figure 2(b).
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Ⅴ. NUMERICAL EXPERIMENTS

In this section, we verify effectiveness of the 

MONTE applied to image denoising. Since the first 

three models in (3) can introduce a severe 

staircasing or numerical dissipation due to a weak 

stability or no constraint term, we select the last two 

in (3), ITV and ABO, as background models for the 

verification. We have implemented four different 

models: ITV, ABO, the ITV incorporating the 

MONTE (M-ITV), and the ABO incorporating the 

MONTE (M-ABO). For the ABO-based models 

(ABO and M-ABO), we set parameters 

     . As a trial image, we choose Lenna 

in gray-scale, Figure 2(a), which is one of most 

popular trial images in IP. As shown in Figure 2(b), 

the image is perturbed by a Gaussian noise of 

PSNR=24.8. Here the PSNR (peak signal-to-noise 

ratio) is defined as

PSNR≡ log



   
 


dB  (28) 

where   is the original image and   denotes the 

compared image. 

For all examples in this section, the image is first 

scaled to have values in  ; after denoising, it is 

scaled back for the 8-bit display. The constant 

components of the timestep size is set   for all 

cases, i.e.,    . For the ITV-based models 

(ITV and M-ITV), the parameter   is set a constant 

in    depending on the image under being 

processed. On the other hand,  the  ABO-based  

models select   x dynamically utilizing a 

given initial constant    [9]
. For 

MONTE-incorporated models (M-ITV and M-ABO), 

we set     and   is determined in each time 

level such that the arithmetic average of  

becomes   over the whole domain:

    










 





(29) 

where   and   denote the number of pixels in 

(a) (b) 

(c) (d) 

Fig. 4. Lenna: Magnified residuals , 
corresponding to the restored images in Figure 3 (in the 
same order).

the image in the horizontal and vertical directions, 

respectively. (The average of diffusion magnitude 

  is ranged between   and   for typical real 

images.)

Figure 3 depicts restored images from the noisy 

image in Figure 2(b) by the four models. As one 

can see from Figure 3(a), the ITV model introduces 

a large numerical dissipation for the restored image 

to be blurry. The ABO and M-ITV models lose less 

fine details in their resulting images, while the 

M-ABO model shows the best restored image as in 

Figure 3(d). See Table 1 below for a PSNR 

comparison.

  

             (a)                        (b)

Fig. 5. The time surfaces on which the restored images 
are obtained for (a) M-ITV and (b) M-ABO.
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(a) (b) 

(c) (d) 

Fig. 6. Images utilized for a PSNR analysis: (a) Bamboo, 
(b) House, (c) Poker Chips, and (d) Forest.

In Figure 4, we present magnified residuals 

    , for a quantitative comparison of 

the restored images in Figure 3, where   is the 

original image in Figure 2(a) and   denotes each of 

the restored  images in Figure 3. As one can see 

from Figure 4(c) and Figure 4(d), the 

MONTE-incorporated models have produced 

significantly reduced residuals. Although some 

texture components of the image are shown in the 

magnified residuals, they are hardly noticeable in the 

(shifted) original residual     , in 

particular, for the M-ABO model.

Figure 5 contains the time surfaces for the 

MONTE-incorporated models on which the restored 

images are obtained. They show lower values on 

regions where the image shows larger values in the 

diffusion magnitude, as we have expected from the 

analysis in Section 3. It is clear to see that such a 

strategy of nonflat time evolution makes the net 

diffusion equalized over a wide range of image 

frequency components, which results in a significant 

reduction in numerical dissipation near fine 

structures.

From Figures 2-5, we have observed that 

denoising algorithms can significantly reduce 

numerical dissipation and  then  satisfactorily  

preserve  fine structures,  when they incorporate the 

MONTE with an ND function  appropriately 

selected. Note that the ND function considered in 

this article ((17) and (19)) is concerned with 

diffusion equalization. The MONTE (along with the 

ND function) has been verified similarly effective 

for all images we have tested.

In Table 1, we present a PSNR analysis for the 

Lenna image considered in Figures 2-5 and a set of 

selected images as shown in Figure 6. The integers 

in parentheses denote the number of iterations in 

which the model can restore its best image 

(measured in the PSNR). As shown in the table, the 

Table 1. PSNR analysis

 ITV ABO M-ITV M-ABO

Lenna     

Bamboo     

House     

Poker Chips     

Forest     

(a) (b) 

(c) (d) 

Fig. 7. Forest: The noisy image (a) and restored images 
by (b) the ITV model, (c) the M-ITV, and (d) the 
M-ABO.
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MONTE-incorporated models result in better PSNRs 

than the non-MONTE models, while the ABO-based 

models perform over the ITV-based models. The 

M-ABO model yields the highest PSNR and the best 

visual restored images, for all tested images 

including ones not presented in this article.

It should be noticed that the MONTE improves 

both efficiency and reliability. As shown in Table 1, 

the M-ITV and M-ABO models require 2-4 

M-CN-ADI iterations for the best PSNRs. The ITV 

model can also restore its best images in two 

iterations for Lenna and Forest. However, these 

cases cannot be considered as a proof for a superior 

efficiency of the ITV model, because its restored 

images are unsatisfactory as indicated by the PSNRs 

that are much lower than those of other models. 

These rather imply that the ITV model is quick to 

remove high-frequency components of the image, 

including the noise and fine structures as well. On 

the other hand, for most tested images, the 

M-CN-ADI algorithm (18) reaches in 2-4 iterations 

the highest PSNR which is not only adequate but 

also larger than the ones obtainable with 

non-MONTE models.

Figure 7  contains  the noisy image and three 

restored images for the Forest image considered in 

Table 1.

As one can see from Figure 7(b), the ITV model 

has destroyed fine structures in two CN-ADI 

iterations, while it is suppressing the noise; the 

restored image is too blurry to be tolerable.

 

 

             (a)                        (b)

Fig. 8. The performance of the M-Heat. (a) The original 
image, (b) a noisy image having PSNR=21.7, and (c) the 
restored image by the M-Heat, having PSNR=31.8.

However, the MONTE-incorporated models 

(M-ITV and M-ABO) can restore comparable 

images just in two M-CN-ADI iterations, preserving 

satisfactorily fine structures of such a 

texture-enriched image.

In particular, the M-ABO model could recover 

great details of the image, as easily observed from 

a comparison between Figure 7(d) and the original 

Forest image in Figure 6(d). Fine structures in 

texture images are not only hard to preserve but also 

bringing up important and challenging problems in 

image restoration.

In order to further verify characteristics of the 

MONTE, we finally incorporate it with one of the 

worst restoration models, the linear homogeneous 

heat equation (the model (7) with   ), and see 

how effectively the resulting model can restore fine 

structures. We will call the resulting model the 

M-Heat.

Figure 8 presents the performance of the M-Heat. 

For simplicity, we select a piecewise constant 

synthetic image as in Figure 8(a). The noisy image 

in Figure 8(b) is obtained by adding a Gaussian 

noise of PSNR=21.7. The M-Heat model requires 

three M-CN-ADI iterations to produce the restored 

image in Figure 8(c) of which PSNR=31.8. 

The restored image shows relatively clear edges, 

although the background model is the heat equation 

representing heat transfer in homogeneous isotropic 

media. When the ITV model (without the MONTE) 

is applied for the noisy image in Figure 8(b), its 

best restored image turns out to have PSNR=30.4, 

which is worse than that of M-Heat.

The above example reveals a distinctive property 

of the MONTE:  the preservation of fine structures 

through diffusion equalization.

Ⅵ. CONCLUSIONS

Various PDE-based models have been studied to 

answer fundamental questions in image restoration 

and improve traditional restoration methods. 

However, the mathematical models show a common 

drawback: loss of fine structure. Thus it is very 

interesting and challenging to develop new strategies 

for PDE-based restoration models to enhance the 
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preservation capability of fine structures such as 

edges and textures. This article has first analyzed the 

source of the drawback: most PDE-based models 

impose an excessive numerical dissipation near fine 

structures due to a larger diffusion magnitude. In 

order to suppress the undesirable dissipation, we 

have introduced the so-called method of nonflat time 

evolution (MONTE) that can equalize the net 

diffusion for various PDE-based models, by 

selecting the timestep size depending on local 

diffusion magnitudes. It has been numerically 

verified that the MONTE is efficient and reliable for 

both synthetic and real images. The new technique 

has shown attractive characteristics such as: (a) 

significant reduction of numerical dissipation, (b) 

successful preservation of fine structures, (c) 

convenient applicability to diverse PDE-based 

restoration models, and (d) improved efficiency. It is 

applicable to color image denoising, with similar 

efficiency and reliability for various representations 

and transformations of color images.
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