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Adaptive Compressed Sensing과 Dictionary Learning을 

이용한 임 기반 음성신호의 복원에 한 연구
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요   약

압축센싱은 이미지, 음성신호, 이더 등 많은 분야에 용되고 있다. 압축센싱은 주로 통계  특성이 시불변인 

신호에 용되고 있으며, 측정 데이터를 여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제 들을 해결

하기 해 음성신호를 임 단 로 나 어 병렬로 처리하 으며, dictionary learning을 이용하여 임들을 

sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 응 으로 만든 응압

축센싱을 용하 다. 이를 통해 통계  특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함

을 확인할 수 있었다.

Key Words : adaptive compressed sensing, dictionary learning, frame based speech signal processing, 

응압축센싱, 임 기반 음성신호처리

ABSTRACT

Compressed sensing has been applied to many fields such as images, speech signals, radars, etc. It has been 

mainly applied to stationary signals, and reconstruction error could grow as compression ratios are increased by 

decreasing measurements. To resolve the problem, speech signals are divided into frames and processed in 

parallel. The frames are made sparse by dictionary learning, and adaptive compressed sensing is applied which 

designs the compressed sensing reconstruction matrix adaptively by using the difference between the sparse 

coefficient vector and its reconstruction. Through the proposed method, we could see that fast and accurate 

reconstruction of non-stationary signals is possible with compressed sensing.
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Ⅰ. Introduction

We use electronic devices such as cell phones, 

notebook PCs and tablet PCs, and they handle 

many things happening in our daily life such as 

buying goods, searching information and sending 

e-mails. Of those devices, cell phones are one of 

the necessities, and we spend lots of time with 

them. In the past, they handled only speech data 

based on the sampling theory, so data throughput 

was small. These days, however, it has been 

gradually increasing due to the convergence of the 

devices and the increase in the huge amounts of 

data such as video clips and images, which 
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causes the vast amount of sensing and the 

consumption of resources. To process and 

reconstruct the data with a small number of 

samples, compressed sensing(CS)[1,2] has recently 

come out. It is a novel paradigm that goes 

against the common wisdom in data acquisition, 

and it can be applied to various fields including 

speech signal processing.

However, it is not suitable for non-stationary 

signals, and reconstruction error could grow as 

compression ratios are increased to reduce data 

processing time. So various methods were used to 

resolve the problem. In 2009, it was applied to 

sparsely excited speech signals consisting of 

successive 40ms frames with a codebook
[3]

, and 

choosing the sensing matrix adaptively was 

proposed according to the energy distribution of 

an original speech signal
[4]

. In 2011, to speed up 

the CS process, multicore systems were used with 

gammatone filterbank and DCT
[5]

. 

Here, we propose a different method, adaptive 

compressed sensing(ACS) with a frame based 

speech signal, to boost the speed of the CS 

process and to  lower the reconstruction error. 

First of all, the speech signal is divided into 

proper frames and processed in parallel. Next, the 

frames are made sparse by dictionary 

learning(DL)
[6]

, and ACS is applied. Lastly, to 

evaluate the performance of the above method, 

computation time, reconstruction error and 

Perceptual Evaluation of Speech Quality(PESQ)
[11]

 

are compared.

In section Ⅱ, the CS theory is introduced. In 

section Ⅲ and Ⅳ, parallel processing and design 

of adaptive compressed sensing reconstruction 

matrix are introduced. In section Ⅴ, experiments 

are conducted. Lastly, the conclusion is given.

Ⅱ. Compressed Sensing Theory

In data acquisition, data are sampled, compressed 

and transmitted or stored. If they have redundant 

information, it will cause additional costs and 

resources. To resolve the problem, CS, a novel 

paradigm, has been recently released. It starts from 

the viewpoint that most signals in nature could be 

represented sparsely, and the sparse coefficients have 

most information of the signals. Thus, we can 

reconstruct the signals exactly with high probability 

by reconstructing only the sparse coefficients from a 

small amount of linear and non-adaptive 

measurements.

In brief, CS is a technique to find sparse solutions 

to underdetermined linear systems. The 

underdetermined system of linear equations has 

more unknowns than  equations and generally has 

an infinite number of solutions. It is required to find 

a sparse and unique solution of the following the 

equation

         (1)

where an N × 1 signal vector   is K-sparse 

(explained in section 2.1),  is an M × N 

measurement matrix which is in charge of sensing 

and compression,   is an M × 1 measurement 

vector,  is an N × N representation matrix 

which makes the signal   sparse,  is an M × 

N compressed sensing reconstruction matrix, and   

is an  N × 1 coefficient vector ( ≪  ).

2.1. Sparse representation
Signals can be represented concisely in the  

domain, for example, DFT of speech signals. They 

can be expressed as

  
 



 or    ,       

   (2)

where  is the coefficients of  , and   is 

the columns of . If only K of  coefficients 

are nonzero, the signal   is K-sparse, and if the 

coefficients consist of many small elements and a 

few large elements, the signal   is called 

compressible. Through the sparse representation, 

we can obtain the efficiency of signal acquisition 

and the reduction of the required resource for 

storage or transmission.
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2.2. RIP and incoherence
If the location of K nonzero coefficients is 

known, the reconstruction of the signal   can be 

done with the M × N measurement matrix  (M 

≪ N). Otherwise, it is hard to reconstruct  . 

However, if  satisfies Restricted Isometry 

Property(RIP)
[1,2]

, accurate reconstruction is 

possible. It is defined as

 

  ∥∥ ≤∥∥ ≤   ∥∥   

 (3)

where  is an isometry constant, and     . 

RIP means that  projects uniform energy to 

each element of  . An important thing is that  

should project energy uniformly for an arbitrary 

 . Furthermore, there is another factor for 

accurate reconstruction called incoherence
[2]

. It 

determines measurement  below

  ≥  (4)

where   is a constant,  is the sparsity level, 

and the coherence between  and ,  , is 

defined as

  ∙
max

≤ ≤  
   (5)

where ∈   , and if  and   

include correlated elements, the coherence is large. 

Generally, a random matrix is chosen as , 

which satisfies both RIP and incoherence.

2.3. Reconstruction
If RIP holds or   and  are incoherent to each 

other, the signal can be reconstructed by L1 norm 

minimization as

   argmin∥∥      (6)

where if ≥, exact 

reconstruction is done with overwhelming 

probability[2]. L1 norm minimization is a convex 

optimization problem, which can be substituted 

with a linear programming method called Basis 

Pursuit(BP)
[8]

. Nowadays, in addition, an iterative 

greedy algorithm, Orthogonal Matching 

Pursuit(OMP)[7], is used frequently due to its fast 

and accurate reconstruction.

Fig. 1. Implementation of the framed speech signal experiment
 : signal,   ,  ,   : 1st, 2nd, nth frame,   ,  ,   : 1st, 2nd, nth sparse coefficients

 ,  ,   : 1st, 2nd, nth observed frame,   , 
 , 
  : 1st, 2nd, nth reconstructed frame,   : reconstructed signal

Ⅲ. Parallel Processing

To speed up the CS process, it can be 

processed in parallel as in Fig. 1. Given a signal 

 , it is divided into n frames where   is the 

kth frame. Each frame is made sparse by a DL 

method. Then sparse coefficient vectors go 

through the compression process. Lastly, all sparse 

coefficient vectors are reconstructed into frames 

and they are combined into the signal  . In this 

processing, we use buffers to store signal frames, 

which reduce the number of the frame 
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compression and reconstruction process. For 

example, a signal is divided into 10 frames and 

five compression and reconstruction processes are 

processed two times.

Ⅳ. Design of Adaptive Compressed 
Sensing Reconstruction Matrix

In CS, the measurement matrix affects 

compression and the result of reconstruction. As 

we choose proper one which satisfies RIP, good 

reconstruction results could come out. Generally, 

the random matrix is used, but it is not suitable 

for every signal. So we propose the adaptive 

compressed sensing reconstruction matrix, which 

modifies the matrix by adding the difference 

between the sparse coefficient vector and its 

reconstruction. This process compensates for the 

error occurring by the compression ratio, but it 

needs the reconstructed signal. It is different from 

the method of the reference [4] that explains the 

design of the measurement matrix adaptively 

according to the energy distribution of an original 

speech signal before transmitting the compressed 

signal. In short, our method enhances performance 

by designing the compressed sensing 

reconstruction matrix adaptively through 

compensation for errors resulting from 

compression and reconstruction. The proposed 

method shown in Fig. 2 is defined as follows.

ⅰ) Initialize :  , ′  , 

′, ′     where   is the 

iteration number,   is an × sparse coefficient 

vector, and ′ is the reconstructed one with a 

newly designed compressed sensing reconstruction 

matrix ′   in iteration  . An × compressed 

sensing reconstruction matrix is denoted by 

     , where  is the th column 

vector (≪).  is an × measurement 

matrix,  is an × dictionary matrix, and ′  
is the × measurement vector by ′   in 

iteration  .

ⅱ) Repeat then    (If  , go to step 

ⅲ).

ⅲ) Obtain the sparse coefficients

     ′   ′  †′   (7)

    where ′ † ′ ′′ .
ⅳ) Obtain the error between the sparse 

coefficient vector and its reconstruction

       ′  (8)

ⅴ) Add the th element of the error vector to 

the th column of the compressed sensing 

reconstruction matrix and repeat it until  

     ′   ′     ,         (9)

where 
  is the th element of the error 

vector in iteration  , and ′   is the th column 

vector of ′ in iteration  .

ⅵ) Design the new compressed sensing 

reconstruction matrix by combining the column 

vectors in ascending order of indices

     ′   ′  ′       ′  . (10)

ⅶ) Obtain the measurements 

      ′  ′  . (11)

ⅷ) Repeat from step ⅱ) until 

∥ ′ ∥ ≤ , where  is an error value for 

termination. If  , go to step ⅱ).

ⅸ) Reconstruct the signal

      
′ †′ 


(12)

 Dictiona

ry 

learning

Recons

t

ruction

Adaptive 

compresse

d sensing

Fig. 2. Implementation of the proposed algorithm
 : signal,    : sparse coefficients

 : measurements,    : reconstructed signal
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Ⅴ. Experiments

Files “47242_alphahog_annabel-lee-2.mp3” and 

“34210_ acclivity_i-am-female.mp3” (6,133,248 

and 6,220,800 samples respectively with sampling 

rate of 44.1kHz) were downloaded from 

“www.freesound.org” for  experiments. The former 

is a male speech signal and the latter is a female 

speech signal. They were transformed to wave 

files and downsampled to 16kHz. Their lengths 

were reduced properly. For the sparse 

representation, greedy adaptive dictionary(GAD)
[6],

[12] was used as a dictionary learning method. It 

provides good performance in sparse 

representation, computation time, and 

reconstruction error in comparison with K-SVD
[9] 

and principal component analysis(PCA)
 

for speech 

signals. For reconstruction, OMP[10] was used, 

which provides better performance in computation 

time and reconstruction error in comparison with 

BP.

5.1. Parallel compressed sensing
As shown in Fig. 1, we divided the female 

speech signal into frames and compared the 

framed speech signal with unframed one in terms 

of computation time, reconstruction error and 

PESQ by changing compression ratios from 0 to 

1 and averaged over 100 times under the 

conditions of Table 1.

Table 1.  Conditions for the experiments

Framed speech signal Unframed speech signal

Frame

(duration 

time per 

frame, ms)

  3 (44,000)

Frame

(duration 

time per 

frame, ms)

1 (13,2000)

 12 (11,000)

 27 (4,888.89)

 48 (2,750)

108 (1,222.22)

As the number of frames is increased, the 

reconstruction error grows as shown in Fig. 3. 

Reconstruction error  [6]
 is defined as

   ∥ ∥ (13)

The more frames are divided, the more 

reconstruction is required. During this process, 

OMP causes increase in errors. In result, a 

trade-off between the reconstruction error and the 

number of frames is required. If fast 

reconstruction is needed regardless of the error, it 

is desirable to increase the number of frames. If 

accurate reconstruction is required, on the 

contrary, the number of frames should be reduced. 

Therefore, it is necessary to choose the proper 

number of frames for fast and accurate 

reconstruction.
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Fig. 3. Reconstruction error of frame based signals and 
an unframed signal

As expected, the framed one is faster than the 

unframed one. As shown in Fig. 4, the more 

frames are, the faster computation time is. We 

might think that if the speech signal is divided 

into 3 frame and processed in parallel, it will be 

three times faster. However, the result shows it is 

almost twelve times faster in average computation 

time.
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Fig. 4. Computation time of framed signals and an 
unframed signal

PESQ is an objective method to compare an 

original signal with an attenuated signal coming 

out from a system. Its value ranges from -0.5 to 

4.5 and normally has the value from 1 to 4.5. As 

shown in Fig. 5, PESQ decreases when the 

number of frames is increased. When the 

compression ratio is 0.3, PESQ is 3.97 for 3 

frames, 3.55 for 12 frames, and 3.24 for 27 

frames.
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Fig. 5. PESQ of framed signals and an unframed signal

As a result of the above experiments, 

reconstruction error and PESQ get worse as the 

number of frames grows, but computation time is 

opposite to those. Compression ratios for accurate 

reconstruction were different for speech signals 

due to their different sparsity. Generally, it is 

possible to reconstruct speech signals accurately 

with the compression ratios between 0.2 and 0.4. 

Additionally, we compared the male speech signal 

with the female one, but conditions such as signal 

waveform, sparsity, length and so on were 

different so it was not easy to compare them.

5.2. Adaptive compressed sensing
We applied ACS to the frame based speech 

signal. The female speech signal was divided into 

5,292 frames, and the duration time of each 

frame was 25ms. The duration time of 20∼40ms 

is proper for CS of non-stationary speech signals 

because non-stationarity can be overcome with 

short frames. The iteration was set to 0. 

Reconstruction error, computation time and PESQ 

were measured by changing the compression ratio 

from 0 to 1 and averaged over 100 times. In the 

experiments, four ways were compared as follows:

1. Non-adaptive compressed sensing(NACS) with 

the framed speech signal

2. Non-adaptive compressed sensing(NACS) with 

the unframed speech signal

3. Adaptive compressed sensing(ACS) with the 

framed speech signal

4. Adaptive compressed sensing(ACS) with the 

unframed speech signal

As shown in Fig. 6, the reconstruction 

performance of ACS is better than that of NACS 

for framed speech signals, but for the unframed 

ones with long duration, the ACS performance is 

worse than that of NACS in some compression 

ratios. Additionally, we conducted several 

experiments and discovered that ACS performance 

is better for the frames below 250,000 samples 

(about 15.6 seconds). 
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Fig. 6. Reconstruction error of ACS and NACS

Computation time of ACS and NACS is 

compared in Fig. 7. Average computation time 

per frame is 0.002 seconds for NACS with the 

framed speech signal, 0.006 seconds for ACS 

with the framed speech signal, 756.28 seconds for 

NACS with the unframed speech signal and 

1,496.20 seconds for ACS with the unframed 

speech signal. In terms of PESQ, the performance 

by ACS is improved greatly and better than that 

by NACS as shown in Fig. 8. 
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Fig. 7. Computation time of ACS and NACS
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Fig. 8. PESQ of ACS and NACS

Furthermore, as shown in Fig. 9, ACS with 

unframed speech signal was iterated once to see 

the effect of iteration and it was found that the 

reconstruction error decreased dramatically. In 

result, reconstruction error and PESQ are 

improved, and computation time is increased by 

ACS. Here, the reconstruction error, PESQ and 

computation time could be enhanced at once by 

increasing the number of frames and the number 

of iterations of the ACS process properly. As 

further work, we plan to do research on ACS in 

noisy environment.
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Fig. 9. Reconstruction error of ACS and NACS with 
iteration=1
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Ⅵ. Conclusion

Compressed sensing is a novel paradigm that 

does sampling and compression at once and 

reconstructs signals with fewer samples than the 

sampling theory requires. These days, CS holds 

the spotlight, and a lot of research is conducted 

actively. However, CS is not suitable for  

non-stationary signals, and reconstruction error 

grows as the compression ratios are increased to 

reduce data processing time.

In this paper, we made an attempt to resolve 

the problem. First, speech signals were divided 

into frames and processed in parallel. Next, the 

frames were made sparse by DL, and ACS was 

applied. As a result, when the number of frames 

was increased, the reconstruction error increased, 

but the computation time and PESQ were in 

inverse proportion to the number of frames. As 

ACS was applied, the performance in the 

reconstruction error and PESQ was enhanced 

dramatically. Furthermore, the performance 

improves with more iterations of the ACS 

process.

In conclusion, fast and accurate reconstruction 

is possible for non-stationary speech signals by 

increasing the number of frames, and applying 

ACS although there is a trade-off between 

reconstruction error and computation time. With 

those merits of low reconstruction error with high 

compression ratio and fast processing time, the 

proposed method could be applied to DSP for 

real-time processing and transmission for big data 

and data storage techniques. Hence, it could cause 

the changes of electronic devices in terms of 

smaller size and lower power consumption.

Appendix

Let  be an × matrix,  be an  × 

vector, and   be an × vector.
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(14)

 Given a ×  matrix  (CS focuses on high 

compression ratios) and a ×  vector  , we 

can reconstruct  with the pseudo inverse, then 

we obtain the results as follows.
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(18)

where  †. Through the equations 

(8)∼(10), we can get the error   and ′ . By 

using ′ , the vector   is reconstructed as 

follows
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Let's take a look at the equation (18) and (21) 

in detail. The difference is that the i-th element 

of   is added to the i-th column of . It means 

that   determines ′ . For the sake of a simple 

explanation, let   be positive, and  ,  ,   

and   are negative as in Fig. 10.  With the 

high compression ratio of 0.2, the element values 

of   are close to zero (See Fig. 10(b)). Then the 

element values of   approach those of  , and 

the element signs of   are the same as those of 

 .

In the equation (21), we can consider three 

cases about the relations between  and   as 

follows.

1. All values of  are bigger than those of  .

2. Some values of  are bigger than those of 

 , and the others are smaller.

3. All values of  are smaller than those of  .

As all mathematical formulas are similar in the 

equation (21), we consider the case of ′ , and 

  are small enough as we use a  ×

random matrix(×) as the measurement matrix 

.

First of all, let us see the first case. All signs 

of    follows those of . Each term 

    in the braces of the numerator 

becomes positive, and the values of      

are almost close to those of   
 in the 

denominator so the first term    in the 

numerator determines the decreases or increases in 

′ . In the second case, as some values which 

are bigger than those of   in  follow the first 

case, we only consider the others which are 

smaller than those of   in .

Under the condition that the values of  are 

almost the same as those of  in high 

compression ratios, and   are small enough, the 

absolute values of terms      in the braces 

of the numerator are close to those of   
, 

and all values are small enough to be neglected. 

Thus, ′≒. The same principle of the 

above case can be applied to the last case. In 

www.dbpia.co.kr



논문 / Adaptive Compressed Sensing과 Dictionary Learning을 이용한 임 기반 음성신호의 복원에 한 연구

1131

result, ACS compensates for the error between the 

original signal and its reconstruction with high 

probability.
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Fig. 10. Implementation of the above mathematical 
explanation, =5×1 vector, =5×5 random matrix, 
M/N=1/5, iteration=0
(a) Comparison of an original signal  and its reconstruction 
by ACS
(b) Comparison of an original signal  and its reconstruction 
by NACS

Moreover, when the above process is iterated, 

as it  compensates for the error repeatedly, more 

accurate reconstruction could be obtained. 

According to extra experiments, two or three 

iterations were proper for accurate reconstruction. 

Furthermore, ACS can be used in dense signals 

as in Fig. 12, and unless   exceeds the 

particular dimension, good results could come out 

even in high compression ratios without iterations.  

Fig. 10∼12 show the implementation of the 

above mathematical explanation, where (a) parts 

of the figures are the comparisons between the 

original signal (red line) and its reconstruction 

by ACS(blue line), and (b) parts of the figures 

are the comparisons between an original signal 

(red line) and its reconstruction by NACS(blue 

line).
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Fig. 11. Implementation of the above mathematical 
explanation, =5×1 vector, =5×5 random matrix, 
M/N=1/5, iteration=2
(a) Comparison of an original signal  and its reconstruction 
by ACS
(b) Comparison of an original signal  and its reconstruction 
by NACS
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Fig. 12. Implementation of the above mathematical 
explanation, =100×1 vector, =100×100 random matrix, 
M/N=1/10, iteration=0
(a) Comparison of an original signal  and its reconstruction 
by ACS
(b) Comparison of an original signal  and its reconstruction 
by NACS
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