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A Memory-Efficient Two-Stage String Matching Engine Using
both Content-Addressable Memory and Bit-split String Matchers
for Deep Packet Inspection
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ABSTRACT

This paper proposes an architecture of two-stage string matching engine with content-addressable
memory(CAM) and parallel bit-split string matchers for deep packet inspection(DPI). Each long signature is
divided into subpatterns with the same length, where subpatterns are mapped onto the CAM in the first stage.
The long pattern is matched in the second stage using the sequence of the matching indexes from the CAM. By
adopting CAM and bit-split string matchers, the memory requirements can be greatly reduced in the
heterogeneous string matching environments.

I. Introduction characters in patterns are different. In the native

CAM-based string matching, because each signature

In DPI, multiple signatures are matched in the was mapped onto an entry in CAM, the problem of
string matching engine at high speed”™. Due to the various signature lengths caused memory wastes. In
variety of signatures, pattern lengths or numbers of several approaches using ternary CAM (TCAM)P*,
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TCAM requirements were over one mega bytes. In
[7], TCAM requirements was proportional to the
number of non-trivial state transitions, which was a
great burden in minimizing TCAM size. In addition,
separate general memory should be adopted to store
the next state address for each TCAM index;
therefore, long state transition time was required in
the previous works"> .

In the string matching based on the Aho-Corasick
algorithm[g], when all signatures were configured as
one deterministic finite automata (DFA), the
numbers of states and state transitions became large.
The bit-split string matchjng[g] adopted parallel string
matchers with split inputs in finite-state machine
(FSM) tiles to reduce the numbers of states and state
transitions. However, the problem of various
signature lengths was not solved”. The string
matching architecture in [10] had two-stage
DFA-based string matching architecture with parallel
bit-split string matchers in both stages. Even though
the problem of various signature lengths can be
solved somewhat, the memory requirements of the
first stage increased. In addition, there were separate
short pattern and remnant pattern matchers in [10],
which made the implementation of the string
matching engine complex.

This paper proposes a two-stage string matching
engine using CAM and bit-split string matchers in
the first and second stages, respectively. Each
signature is divided into subpatterns with the same
length. Subpatterns are mapped onto the CAM rows
in the first stage, which reduces the required CAM
size, compared to the traditional CAM-based string
matching. In addition, the memory requirements of
the first stage increase proportional only to the
subpattern length. In the second stage based on the
Aho-Corasick algorithm, long signatures can be
recognized using the sequence of match vectors
from the first stage. By applying a heuristic
algorithm for the signature mapping in the second
stage, the proposed architecture reduces the memory
requirements of the bit-split string matchers.
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II. Proposed Architecture

Fig. 1 shows an example of the proposed parallel
string matching architecture. Each long signature is
divided into multiple subpatterns with the same
length and a remnant pattern like [10]. However, in
the proposed architecture, by adopting CAM in the
first stage, short pattern and remnant pattern
matchers are eliminated, which reduces the
complexity of implementing the string matching
engine. The first stage of the proposed string
matching engine detects the matches with
subpatterns. For example, a signature “aabbcdd” can
be divided into subpatterns “aa,” “bb,” “cd” with
two characters and a remnant pattern ‘d.” The
character ‘x” or don’t care is added to the remnant
pattern to make the remnant pattern length equal to
the fixed subpattern length. Therefore, the signature
“aabbcdd” is matched when subpatterns “aa,” “bb,”
“cd,” and “dx” are matched in order.

When each subpattern is matched in the first
stage, the match vector for the subpattern is
generated from the first stage. The match vector
from the CAM is inputted to the second stage. With
the match vectors from the first stage, the bit-split
FSMs are constructed in the second stage. When the
total number of subpatterns is u, the number of bits
of a match vector is [logou | .

Each match vector is split into multiple bit inputs
for the bit-split string matching. In the example of
Fig. 1, two bits are inputted to each memory-based
FSM tile. The second stage has parallel

Second-stage parallel bit-split string matchers

tring Matcher 1
e 0

Full
Tile 5 Match
* Vector 1

First-stage CAM

o flogzu] Full Match Vector 2

flogzu] Full Match Vector m

Subpattern u
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Fig. 1. An example of proposed string matching architecture.
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homogeneous string matchers, where the maximum
number of signatures to be mapped in a string
matcher is limited. Because each signature consists
of multiple characters, states should be buffered into
registers to handle each character input. For
example, when the length of subpatterns mapped
onto the first stage is two, signatures “abab” and
“ba” are assumed to be searched. The first signature
can be matched when characters are inputted as a —
b — a — b. In this case, the subpattern “ab” is
matched twice in sequence. In addition, the second
signature “ba” is matched because “ba” is composed
of the last and first characters of a subpattern “ab”
for the first signature.

Fig. 2 shows an FSM tile in the second stage. To
deal with the signature matching at different time, [
registers are inserted to buffer transitions between
states in the FSM tile, where [ is the length of
subpatterns in the first stage. When the output state
is reached, the partial match vector (PMV) for the
original signature is outputted from each FSM tile.
In this case, PMVs are buffered for the signature
matching at different time in Fig. 2. With the
bitwise AND operation of all PMVs from FSM tiles
like [9], the full match vector (FMV) is obtained,
where each bit in FMVs shows whether its related
signature is matched or not.

Fig. 3 shows an example of state transitions in
FSM tiles for the second stage. According to the
input, state transitions can happen. In Fig. 3, the
target signature is “aabbcdd.” This example assumes
that four-bit match vector from the first stage. In
this example, the matches with “aa,” “bb,” “cd,” and
“dx” can generate the match vectors of “1000,”
“1001,” “1010,” and “1011,” respectively. In

PMV
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Fig. 2. FSM tile in the second stage.
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Fig. 3. An example of state transitions in FSM tiles.

addition, the matches with “aa,” “bb,” “ef,” and
“kx” can generate the match vectors of “1000,”
“1001,” “1110,” and “1111,” respectively. When
match vectors “1000,” “1001,” “1010,” and “1011~
are inputted into the second stage in order, the
signature “aabbcdd” is matched. Each group of two
bits is inputted into each FSM tile. The binary
number on the upper side of left tables means input
value. Each row indicates the state, where next state
pointers are stored according to the input values.
According to the high-order two-bit input, the output
states for signatures “aabbcdd” and “aabbefk” can
be four and six, respectively. The PMIs related to
the output states contain pointers towards their
PMVs. When the first and second bits in PMVs
indicate the matches with “aabbcdd” and “aabbefk,”
the values can be true or one in the first and fourth
rows in the upper PMV table. On the other hand,
the sequences of the low-order two-bit inputs for the
two signature matches are the same. Therefore, both
the first and second bits in the lower PMV table can
be true or one simultaneously. In order to know
which signature is matched, the PMV values from
the upper and lower PMV tables are bitwise
ANDed.

. Signature Mapping onto the Proposed
String Matching Engine

In order to map signatures, signatures are divided

and unique subpatterns with the same length are
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obtained. A sequence of match vectors from the first
stage for each long signature can be the input for
the signature matching in the second stage. The set
of the match vector sequences is partitioned into
multiple subsets for homogeneous string matchers in
the second stage. In this case, the maximum
numbers of matched signatures and states in each
FSM tile are considered. For the signature mapping
of the second stage, the heuristic algorithm in [11]
is applied to reduce the required number of string
matchers in the second stage. In this algorithm, after
obtaining the initial set with lexicographical sorting
for each string matcher, the algorithm searches for
other match vectors to be mapped simultaneously
onto the string matcher of the second stage greedily.
As shown in Fig. 4, the maximum number of
signatures in a string matcher is adopted. After
constructing DFAs, if the resource limitation is not
met, the number of mapped signature in a string
matcher decreases. The signature mapping is
repeated until there are no unmapped match vectors

for the second stage.

sorted n signatures

!

DFA Construction

l¢—— -- signatures €——

s Resource
Sufficient

Mapping data

2 4. & 3A oA oA e 2
Fig. 4. Signature mapping in a string matcher.

IV. Experimental results

4.1 Experimental data

The evaluations were performed using a set that
consists of 7784 unique signatures from Snort
v2.8"% Because this architecture was composed of
CAM and memory-based FSMs, the memory
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requirements of the first and second stages were
individually analyzed. For the first stage, evaluations
were performed by varying CAM width from 3 to
8. Table 1 summarizes the memory requirements
according to the CAM width of the first stage.
Because the maximum length in the signatures set
was 122, if target signatures were not divided into
subpatterns, 950 Kbytes were required to map total
rule sets using only CAM. Therefore, by dividing
signatures into multiple subpatterns, the required
CAM size can be greatly reduced; for example,
when CAM width was 4, CAM size was only 62
Kbytes. When CAM width changed from 3 to 4, the
number of unique signatures increased greatly; on
the other hand, when CAM width changed from 6
to 7, the number of unique signatures decreased
slightly. However, CAM size increased with CAM
width in all cases. Considering the TCAM sizes in
[5-7], which were over one mega bytes, the
proposed string matching required small TCAM in
the first stage.

For the second stage, the maximum number of
states in an FSM tile of the string matcher, S was
set as 64 or 128, considering the maximum signature
lengths of the Snort rule set. Experiments were
processed with varied numbers of bits in a PMV, P
from 16, 32, 48, and 64. Considering the previous
studies in [9] and [10], the number of input bits in
an FSM tile was set as two. In addition, the number
of FSM tiles in each string matcher was fixed as 8.
In order to show the effectiveness of signature
mapping in the second stage, the previous signature
mapping approaches with the original order and
lexicographical sorting in [9] were evaluated, which
were denoted as origin and lexical, respectively. In
[10], each input bit for an FSM tile input was
selected from both the most significant bits (MSBs)

E 1. 15kelxe] CAM Unje] mE A o
Table 1. Experimental summary according to CAM width
in the first stage.

stage width 3 4 5 6 7 8
first itsubpatterns  [12.5K|15.6K|17.7K]17.1K]|16.9K|16.0K
#CAM(Kbyts) | 37.8 | 62.4 | 88.4 |102.3|118.3]128.2
fmatchers 611 | 427 | 365 | 302 | 297 | 259
second

#Mem(Kbytes)| 1760 | 1230|1051 | 870 | 855 | 746
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and least significant bits (LSBs) of the byte input
alternately. This input bit grouping method was
applied to the signature mapping approaches with
the original order and lexicographical sorting, which
were denoted as origing and lexicalg, respectively.
In the experiments, the memory requirements for
the second stage can be minimized when § and P
were 64 and 32, respectively. In Table 1, the
required numbers of string matchers and its memory
requirements are shown by sweeping CAM width
when S and P are 64 and 32. By increasing the
CAM width, the memory requirements of the second
stage were reduced, which means that the number of
unique subpatterns decreased with CAM width. In
this case, when CAM width was 8, the number of
required string matchers and the memory
requirements were 259 and 746 Kbytes.

4.2 Comparisons and discussion

Table 2 shows memory requirements in terms of
the required number of string matchers in the second
stage. As the CAM width increased, the number of
match vectors decreased; therefore, the reduced
number of string matchers can decrease. In addition,
the ratio of reduced memory requirements decreased.
This can be mainly due to the decrease of the
signature lengths in the second stage. The required
numbers of string matchers in the second stage were
reduced by 27.9%-15.1%, 26.0%-12.3%,
19.0%-10.8%, and 10.5%-2.7%, compared to the
cases of origin, origing, lexical, and lexicaly,
respectively. Therefore, it was concluded that the
number of string matchers in the second stage was
decreased by applying the heuristic algorithm in [11]
without additional hardware. In order to know the

performance of the proposed string matching engine,

E 2. 259 8= AR wiA ] A
Table 2. Memory requirements in terms of required
number of string matchers in the second stage.

#CAM width) 3 4 5 6 7 8
origin 779 | 541 | 467 | 362 | 360 | 298
origing 770 | 525 | 458 | 355 | 355 | 291

when CAM width was 8, the main blocks were
implemented using an Xilinx field programmable
gate array (FPGA)"™. The maximum clock speed of
the second stage was 370 MHz. When multiple
CAM blocks with 2048 entries were used, the
maximum clock speed in the first stage was 81
MHz. In this case, the throughput can be 648 Mbps.
On the other hand, when the number of entries was
128 in each CAM block, the maximum clock speed
increased up to 102 MHz. Therefore, as the number
of TCAM entries increased, it was concluded that
the maximum clock speed decreased in the FPGA
implementation. In addition, considering the speed
of TCAM slower than that of the general memory,
the speed was limited in the first stage when the
proposed string matching engine was implemented
using FPGA.

On the other hand, the stand-alone commercial
TCAM in [14] was considered to analyze the
performance of the proposed string matching engine.
In [14], the maximum clock speed was 360 MHz.
Considering the maximum clock speed in the second
stage implemented in the FPGA above, the speed of
the second stage was sufficient to meet the
performance of the first stage. According to the
clock speed of TCAM, the maximum throughput can
be 2.88 Gbps. Compared to the multi-cycle loops (2
or 3 clock cycles) in the previous TCAM-based

string matching methods"”

, the proposed string
matching engine generated the match vector at each
clock cycle in the first stage. In addition, the second
stage obtained FMVs at each cycle in a pipelined
manner. Therefore, the performance of the proposed
string matching engine can be enhanced twice or
three times. In Table 3, the pros and cons are

summarized by comparing the proposed and

E 3. ix el A wla
Table 3. Summary of pros and cons.

method pros cons
TCAM simple

general SRAM,
high performance

high power&price

many small separate

bit-split memory blocks

lexical 727 | 504 | 420 | 338 | 343 | 287
lexicalg 675 | 454 | 376 | 316 | 313 | 266
proposed 611 | 427 | 365 | 302 | 297 | 259

small TCAM size,
proposed | high performance
(~x3)

both SRAM and
TCAM
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previous works.

V. Conclusion

The proposed string matching adopts small CAM
and bit-split string matchers in two stages, so that
the problem of various signature lengths can be
solved with reduced memory requirements and
complexity. Considering the experimental results
above, the proposed two-stage string matching can
reduce CAM size in the first stage and the required
number of string matchers in second stage.
Therefore, it is expected that the proposed two-stage
string matching architecture is useful for reducing

the storage cost in the DPIL.
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