
논문 14-39B-07-02 The Journal of Korea Information and Communications Society '14-07 Vol.39B No.07
http://dx.doi.org/10.7840/kics.2014.39B.7.433

433

CAM과 비트 분리 문자열 매처를 이용한 DPI를 한

2단의 문자열 매칭 엔진의 개발

김 진 °, 최 강 일*

A Memory-Efficient Two-Stage String Matching Engine Using

both Content-Addressable Memory and Bit-split String Matchers

for Deep Packet Inspection

HyunJin Kim
°
, Kang-Il Choi

*

요 약

본 논문은 DPI (deep packet insepction)를 한 CAM (content-addressable memory)과 병렬의 비트 분리

(bit-split) 문자열 매처(matcher)를 이용한 2단의 문자열 매칭 엔진의 구조를 제안한다. 긴 타겟 패턴은 같은 길이

의 서 패턴으로 잘라지게 되고, 각 서 패턴은 1단의 CAM에 매핑된다. CAM으로부터의 매칭 인덱스의 시 스

를 사용하여 2단에서 긴 패턴의 매칭 여부를 알 수 있다. CAM과 비트 분리 문자열 매처를 사용하여 이 기종의

메모리를 사용했을 경우에 메모리 요구량을 크게 일 수 있다.

Key Words : Aho-Corasick algorithm, Content-addressable memory, Deep packet inspection, Pattern

mapping, String matching engine

ABSTRACT

This paper proposes an architecture of two-stage string matching engine with content-addressable

memory(CAM) and parallel bit-split string matchers for deep packet inspection(DPI). Each long signature is

divided into subpatterns with the same length, where subpatterns are mapped onto the CAM in the first stage.

The long pattern is matched in the second stage using the sequence of the matching indexes from the CAM. By

adopting CAM and bit-split string matchers, the memory requirements can be greatly reduced in the

heterogeneous string matching environments.

※ 본 연구는 미래창조과학부 정보통신기술진흥센터의 정보통신·방송 연구개발 사업의 일환으로 수행하 음.[스마트 네트워킹 핵심

기술 개발]

° First Author and Corresponding Author : School of EEE, Dankook University, hyunjin2.kim@gmail.com, 정회원

* Smart Node Platform Lab., Electronics and Telecommunications Research Institute, forerunner@etri.re.kr

논문번호：KICS2014-02-041, Received February 04, 2014; Reviewed July 15, 2014; Accepted July 15, 2014

Ⅰ. Introduction

In DPI, multiple signatures are matched in the

string matching engine at high speed[1-4]. Due to the

variety of signatures, pattern lengths or numbers of

characters in patterns are different. In the native

CAM-based string matching, because each signature

was mapped onto an entry in CAM, the problem of

various signature lengths caused memory wastes. In

several approaches using ternary CAM (TCAM)[5,6],

www.dbpia.co.kr

The Journal of Korea Information and Communications Society '14-07 Vol.39B No.07

434

그림 1. 제안된 문자열 매칭 구조의
Fig. 1. An example of proposed string matching architecture.

TCAM requirements were over one mega bytes. In

[7], TCAM requirements was proportional to the

number of non-trivial state transitions, which was a

great burden in minimizing TCAM size. In addition,

separate general memory should be adopted to store

the next state address for each TCAM index;

therefore, long state transition time was required in

the previous works
[5-7].

In the string matching based on the Aho-Corasick

algorithm
[8], when all signatures were configured as

one deterministic finite automata (DFA), the

numbers of states and state transitions became large.

The bit-split string matching
[9] adopted parallel string

matchers with split inputs in finite-state machine

(FSM) tiles to reduce the numbers of states and state

transitions. However, the problem of various

signature lengths was not solved
[9]. The string

matching architecture in [10] had two-stage

DFA-based string matching architecture with parallel

bit-split string matchers in both stages. Even though

the problem of various signature lengths can be

solved somewhat, the memory requirements of the

first stage increased. In addition, there were separate

short pattern and remnant pattern matchers in [10],

which made the implementation of the string

matching engine complex.

This paper proposes a two-stage string matching

engine using CAM and bit-split string matchers in

the first and second stages, respectively. Each

signature is divided into subpatterns with the same

length. Subpatterns are mapped onto the CAM rows

in the first stage, which reduces the required CAM

size, compared to the traditional CAM-based string

matching. In addition, the memory requirements of

the first stage increase proportional only to the

subpattern length. In the second stage based on the

Aho-Corasick algorithm, long signatures can be

recognized using the sequence of match vectors

from the first stage. By applying a heuristic

algorithm for the signature mapping in the second

stage, the proposed architecture reduces the memory

requirements of the bit-split string matchers.

Ⅱ. Proposed Architecture

Fig. 1 shows an example of the proposed parallel

string matching architecture. Each long signature is

divided into multiple subpatterns with the same

length and a remnant pattern like [10]. However, in

the proposed architecture, by adopting CAM in the

first stage, short pattern and remnant pattern

matchers are eliminated, which reduces the

complexity of implementing the string matching

engine. The first stage of the proposed string

matching engine detects the matches with

subpatterns. For example, a signature “aabbcdd” can

be divided into subpatterns “aa,” “bb,” “cd” with

two characters and a remnant pattern ‘d.’ The

character ‘x’ or don’t care is added to the remnant

pattern to make the remnant pattern length equal to

the fixed subpattern length. Therefore, the signature

“aabbcdd” is matched when subpatterns “aa,” “bb,”

“cd,” and “dx” are matched in order.

When each subpattern is matched in the first

stage, the match vector for the subpattern is

generated from the first stage. The match vector

from the CAM is inputted to the second stage. With

the match vectors from the first stage, the bit-split

FSMs are constructed in the second stage. When the

total number of subpatterns is u, the number of bits

of a match vector is ⌈log2u⌉.

Each match vector is split into multiple bit inputs

for the bit-split string matching. In the example of

Fig. 1, two bits are inputted to each memory-based

FSM tile. The second stage has parallel

www.dbpia.co.kr

논문 / CAM과 비트 분리 문자열 매처를 이용한 DPI를 한 2단의 문자열 매칭 엔진의 개발

435

그림 3. FSM 타일의 상태 천이의
Fig. 3. An example of state transitions in FSM tiles.

그림 2. 2단의 FSM 타일
Fig. 2. FSM tile in the second stage.

homogeneous string matchers, where the maximum

number of signatures to be mapped in a string

matcher is limited. Because each signature consists

of multiple characters, states should be buffered into

registers to handle each character input. For

example, when the length of subpatterns mapped

onto the first stage is two, signatures “abab” and

“ba” are assumed to be searched. The first signature

can be matched when characters are inputted as a →

b → a → b. In this case, the subpattern “ab” is

matched twice in sequence. In addition, the second

signature “ba” is matched because “ba” is composed

of the last and first characters of a subpattern “ab”

for the first signature.

Fig. 2 shows an FSM tile in the second stage. To

deal with the signature matching at different time, l

registers are inserted to buffer transitions between

states in the FSM tile, where l is the length of

subpatterns in the first stage. When the output state

is reached, the partial match vector (PMV) for the

original signature is outputted from each FSM tile.

In this case, PMVs are buffered for the signature

matching at different time in Fig. 2. With the

bitwise AND operation of all PMVs from FSM tiles

like [9], the full match vector (FMV) is obtained,

where each bit in FMVs shows whether its related

signature is matched or not.

Fig. 3 shows an example of state transitions in

FSM tiles for the second stage. According to the

input, state transitions can happen. In Fig. 3, the

target signature is “aabbcdd.” This example assumes

that four-bit match vector from the first stage. In

this example, the matches with “aa,” “bb,” “cd,” and

“dx” can generate the match vectors of “1000,”

“1001,” “1010,” and “1011,” respectively. In

addition, the matches with “aa,” “bb,” “ef,” and

“kx” can generate the match vectors of “1000,”

“1001,” “1110,” and “1111,” respectively. When

match vectors “1000,” “1001,” “1010,” and “1011”

are inputted into the second stage in order, the

signature “aabbcdd” is matched. Each group of two

bits is inputted into each FSM tile. The binary

number on the upper side of left tables means input

value. Each row indicates the state, where next state

pointers are stored according to the input values.

According to the high-order two-bit input, the output

states for signatures “aabbcdd” and “aabbefk” can

be four and six, respectively. The PMIs related to

the output states contain pointers towards their

PMVs. When the first and second bits in PMVs

indicate the matches with “aabbcdd” and “aabbefk,”

the values can be true or one in the first and fourth

rows in the upper PMV table. On the other hand,

the sequences of the low-order two-bit inputs for the

two signature matches are the same. Therefore, both

the first and second bits in the lower PMV table can

be true or one simultaneously. In order to know

which signature is matched, the PMV values from

the upper and lower PMV tables are bitwise

ANDed.

Ⅲ. Signature Mapping onto the Proposed
String Matching Engine

In order to map signatures, signatures are divided

and unique subpatterns with the same length are

www.dbpia.co.kr

The Journal of Korea Information and Communications Society '14-07 Vol.39B No.07

436

stage width 3 4 5 6 7 8

first
#subpatterns 12.5K15.6K17.7K17.1K16.9K16.0K

#CAM(Kbyts) 37.8 62.4 88.4 102.3 118.3 128.2

second
#matchers 611 427 365 302 297 259

#Mem(Kbytes) 1760 1230 1051 870 855 746

표 1. 1단에서의 CAM 비에 따른 실험 요약
Table 1. Experimental summary according to CAM width
in the first stage.

obtained. A sequence of match vectors from the first

stage for each long signature can be the input for

the signature matching in the second stage. The set

of the match vector sequences is partitioned into

multiple subsets for homogeneous string matchers in

the second stage. In this case, the maximum

numbers of matched signatures and states in each

FSM tile are considered. For the signature mapping

of the second stage, the heuristic algorithm in [11]

is applied to reduce the required number of string

matchers in the second stage. In this algorithm, after

obtaining the initial set with lexicographical sorting

for each string matcher, the algorithm searches for

other match vectors to be mapped simultaneously

onto the string matcher of the second stage greedily.

As shown in Fig. 4, the maximum number of

signatures in a string matcher is adopted. After

constructing DFAs, if the resource limitation is not

met, the number of mapped signature in a string

matcher decreases. The signature mapping is

repeated until there are no unmapped match vectors

for the second stage.

그림 4. 한 문자열 매처의 시그 처 매핑 과정
Fig. 4. Signature mapping in a string matcher.

Ⅳ. Experimental results

4.1 Experimental data
The evaluations were performed using a set that

consists of 7784 unique signatures from Snort

v2.8
[12]. Because this architecture was composed of

CAM and memory-based FSMs, the memory

requirements of the first and second stages were

individually analyzed. For the first stage, evaluations

were performed by varying CAM width from 3 to

8. Table 1 summarizes the memory requirements

according to the CAM width of the first stage.

Because the maximum length in the signatures set

was 122, if target signatures were not divided into

subpatterns, 950 Kbytes were required to map total

rule sets using only CAM. Therefore, by dividing

signatures into multiple subpatterns, the required

CAM size can be greatly reduced; for example,

when CAM width was 4, CAM size was only 62

Kbytes. When CAM width changed from 3 to 4, the

number of unique signatures increased greatly; on

the other hand, when CAM width changed from 6

to 7, the number of unique signatures decreased

slightly. However, CAM size increased with CAM

width in all cases. Considering the TCAM sizes in

[5-7], which were over one mega bytes, the

proposed string matching required small TCAM in

the first stage.

For the second stage, the maximum number of

states in an FSM tile of the string matcher, S was

set as 64 or 128, considering the maximum signature

lengths of the Snort rule set. Experiments were

processed with varied numbers of bits in a PMV, P

from 16, 32, 48, and 64. Considering the previous

studies in [9] and [10], the number of input bits in

an FSM tile was set as two. In addition, the number

of FSM tiles in each string matcher was fixed as 8.

In order to show the effectiveness of signature

mapping in the second stage, the previous signature

mapping approaches with the original order and

lexicographical sorting in [9] were evaluated, which

were denoted as origin and lexical, respectively. In

[10], each input bit for an FSM tile input was

selected from both the most significant bits (MSBs)

www.dbpia.co.kr

논문 / CAM과 비트 분리 문자열 매처를 이용한 DPI를 한 2단의 문자열 매칭 엔진의 개발

437

method pros cons

TCAM simple high power&price

bit-split
general SRAM,

high performance

many small separate

memory blocks

proposed

small TCAM size,

high performance

(~x3)

both SRAM and

TCAM

표 3. 표 방법의 장단 비교
Table 3. Summary of pros and cons.

#CAM width 3 4 5 6 7 8

origin 779 541 467 362 360 298

origing 770 525 458 355 355 291

lexical 727 504 420 338 343 287

lexicalg 675 454 376 316 313 266

proposed 611 427 365 302 297 259

표 2. 2단에서의 요구되는 문자열 매처의 개수
Table 2. Memory requirements in terms of required
number of string matchers in the second stage.

and least significant bits (LSBs) of the byte input

alternately. This input bit grouping method was

applied to the signature mapping approaches with

the original order and lexicographical sorting, which

were denoted as origing and lexicalg, respectively.

In the experiments, the memory requirements for

the second stage can be minimized when S and P

were 64 and 32, respectively. In Table 1, the

required numbers of string matchers and its memory

requirements are shown by sweeping CAM width

when S and P are 64 and 32. By increasing the

CAM width, the memory requirements of the second

stage were reduced, which means that the number of

unique subpatterns decreased with CAM width. In

this case, when CAM width was 8, the number of

required string matchers and the memory

requirements were 259 and 746 Kbytes.

4.2 Comparisons and discussion
Table 2 shows memory requirements in terms of

the required number of string matchers in the second

stage. As the CAM width increased, the number of

match vectors decreased; therefore, the reduced

number of string matchers can decrease. In addition,

the ratio of reduced memory requirements decreased.

This can be mainly due to the decrease of the

signature lengths in the second stage. The required

numbers of string matchers in the second stage were

reduced by 27.9%-15.1%, 26.0%-12.3%,

19.0%-10.8%, and 10.5%-2.7%, compared to the

cases of origin, origing, lexical, and lexicalg,

respectively. Therefore, it was concluded that the

number of string matchers in the second stage was

decreased by applying the heuristic algorithm in [11]

without additional hardware. In order to know the

performance of the proposed string matching engine,

when CAM width was 8, the main blocks were

implemented using an Xilinx field programmable

gate array (FPGA)
[13]. The maximum clock speed of

the second stage was 370 MHz. When multiple

CAM blocks with 2048 entries were used, the

maximum clock speed in the first stage was 81

MHz. In this case, the throughput can be 648 Mbps.

On the other hand, when the number of entries was

128 in each CAM block, the maximum clock speed

increased up to 102 MHz. Therefore, as the number

of TCAM entries increased, it was concluded that

the maximum clock speed decreased in the FPGA

implementation. In addition, considering the speed

of TCAM slower than that of the general memory,

the speed was limited in the first stage when the

proposed string matching engine was implemented

using FPGA.

On the other hand, the stand-alone commercial

TCAM in [14] was considered to analyze the

performance of the proposed string matching engine.

In [14], the maximum clock speed was 360 MHz.

Considering the maximum clock speed in the second

stage implemented in the FPGA above, the speed of

the second stage was sufficient to meet the

performance of the first stage. According to the

clock speed of TCAM, the maximum throughput can

be 2.88 Gbps. Compared to the multi-cycle loops (2

or 3 clock cycles) in the previous TCAM-based

string matching methods
[5-7], the proposed string

matching engine generated the match vector at each

clock cycle in the first stage. In addition, the second

stage obtained FMVs at each cycle in a pipelined

manner. Therefore, the performance of the proposed

string matching engine can be enhanced twice or

three times. In Table 3, the pros and cons are

summarized by comparing the proposed and

www.dbpia.co.kr

The Journal of Korea Information and Communications Society '14-07 Vol.39B No.07

438

previous works.

Ⅴ. Conclusion

The proposed string matching adopts small CAM

and bit-split string matchers in two stages, so that

the problem of various signature lengths can be

solved with reduced memory requirements and

complexity. Considering the experimental results

above, the proposed two-stage string matching can

reduce CAM size in the first stage and the required

number of string matchers in second stage.

Therefore, it is expected that the proposed two-stage

string matching architecture is useful for reducing

the storage cost in the DPI.

References

[1] P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai,

“Using string matching for deep packet

inspection,” IEEE Computer, vol. 41, no. 4,

pp. 23-28, 2008.

[2] K. Kim, S. Kang, I. Song, and T. Kwon,

“TCAM partitioning for high - performance

packet classification,” J. KICS, vol. 31, No.

2B, pp. 91-97, 2006.

[3] T. AbuHmed, A. Mohaisen, and D. H. Nyang,

“A survey on deep packet inspection for

intrusion detection systems,” Mag. Korea

Telecommun. Soc., vol. 24, No. 11, pp. 25-36,

2007

[4] Y.-C. Yoon and S.-Y. Hwang, “Design and

implementation of high-speed pattern matcher

in network intrusion detection system,” J.

KICS, vol. 33, no. 11B, pp. 1020-1029, 2008.

[5] F. Yu, R. H. Katz, and T. V. Lakshman,

“Gigabit rate packet pattern-matching using

TCAM,” in Proc. Int. Conf. Network

Protocols (ICNP 2004), pp. 174-183, Oct.

2004.

[6] J.-S. Sung S.-M. Kang, Y. Lee, and T.-G.

Kwon, “A multi-gigabit rate deep packet

inspection algorithm using TCAM,” in Proc.

IEEE GLOBECOM, pp. 453-457, 2004.

[7] S. Yun, “An efficient TCAM-based

implementation of multipattern matching using

covered state encoding,” IEEE Trans.

Computers, vol. 61, no. 2, pp. 213-221, Feb.

2012.

[8] A. V. Aho and M. J. Corasick, “Efficient

string matching: an aid to bibliographic

search,” Commun. ACM, vol. 18, issue 6, pp.

652-654, 1975.

[9] L. Tan, B. Brotherton, and T. Sherwood,

“Bit-split string-matching engines for intrusion

detection and prevention,” ACM Trans. Archit.

and Code Optimization, vol. 3, no. 1, pp.

3-34, 2006.

[10] H. Kim, H.-S. Hong, and S. Kang, “A

memory-efficient bit-split parallel string

matching using pattern dividing for intrusion

detection systems,” IEEE Trans. Parallel and

Distributed Syst., vol. 22, no. 11, pp.

1004-1006, 2011.

[11] H. Kim, H. Hong, D. Baek, and S. Kang, “A

pattern partitioning algorithm for

memory-efficient parallel string matching in

deep packet inspection,” IEICE Trans.

Commun., vol. E93-B, no. 6, pp. 1612-1614,

2010.

[12] Snort, “Intrusion detection system,” http://ww

w.snort.org.

[13] Xilinx: Virtex-4 VLX FPGA, http://www.xili

nx.com.

[14] Renesas: TCAM, http://www.renesas.com/ pro

ducts/memory/TCAM/index.jsp.

김 진 (HyunJin Kim)

1997년 2월：연세 학교 기

공학과 졸업

2010년 2월：연세 학교 기

자공학과 박사

2011년 9월~ 재：단국 학교

자 기공학과 조교수

< 심분야> 디지털 회로 설계

 알고리즘 구 , 문자열 매칭, 가상화 시스템

www.dbpia.co.kr

논문 / CAM과 비트 분리 문자열 매처를 이용한 DPI를 한 2단의 문자열 매칭 엔진의 개발

439

최 강 일 (Kang-Il Choi)

1992년：KAIST 자계산학과

학사

1994년 : 서강 학교 자계산

학과 석사

2011년 9월~ 재：한국 자통

신연구원 스마트노드 랫폼

연구실 선임연구원

< 심분야> 패킷 달망 기술, 스마트 네트워트 기

술, 네트워크 가상화 기술

www.dbpia.co.kr

	A Memory-Efficient Two-Stage String Matching Engine Using both Content-Addressable Memory and Bit-split String Matchers for Deep Packet Inspection
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Proposed Architecture
	Ⅲ. Signature Mapping onto the Proposed String Matching Engine
	Ⅳ. Experimental results
	Ⅴ. Conclusion
	References

