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요   약

본 논문은 DPI (deep packet insepction)를 한 CAM (content-addressable memory)과 병렬의 비트 분리

(bit-split) 문자열 매처(matcher)를 이용한 2단의 문자열 매칭 엔진의 구조를 제안한다. 긴 타겟 패턴은 같은 길이

의 서  패턴으로 잘라지게 되고, 각 서 패턴은 1단의 CAM에 매핑된다. CAM으로부터의 매칭 인덱스의 시 스

를 사용하여 2단에서 긴 패턴의 매칭 여부를 알 수 있다. CAM과 비트 분리 문자열 매처를 사용하여 이 기종의 

메모리를 사용했을 경우에 메모리 요구량을 크게 일 수 있다. 

Key Words : Aho-Corasick algorithm, Content-addressable memory, Deep packet inspection, Pattern

mapping, String matching engine

ABSTRACT

This paper proposes an architecture of two-stage string matching engine with content-addressable 

memory(CAM) and parallel bit-split string matchers for deep packet inspection(DPI). Each long signature is 

divided into subpatterns with the same length, where subpatterns are mapped onto the CAM in the first stage. 

The long pattern is matched in the second stage using the sequence of the matching indexes from the CAM. By 

adopting CAM and bit-split string matchers, the memory requirements can be greatly reduced in the 

heterogeneous string matching environments.
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Ⅰ. Introduction 

In DPI, multiple signatures are matched in the 

string matching engine at high speed[1-4]. Due to the 

variety of signatures, pattern lengths or numbers of 

characters in patterns are different. In the native 

CAM-based string matching, because each signature 

was mapped onto an entry in CAM, the problem of 

various signature lengths caused memory wastes. In 

several approaches using ternary CAM (TCAM)[5,6], 
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그림 1. 제안된 문자열 매칭 구조의 
Fig. 1. An example of proposed string matching architecture.

TCAM requirements were over one mega bytes. In 

[7], TCAM requirements was proportional to the 

number of non-trivial state transitions, which was a 

great burden in minimizing TCAM size. In addition, 

separate general memory should be adopted to store 

the next state address for each TCAM index; 

therefore, long state transition time was required in 

the previous works
[5-7]. 

In the string matching based on the Aho-Corasick 

algorithm
[8], when all signatures were configured as 

one deterministic finite automata (DFA), the 

numbers of states and state transitions became large. 

The bit-split string matching
[9] adopted parallel string 

matchers with split inputs in finite-state machine 

(FSM) tiles to reduce the numbers of states and state 

transitions. However, the problem of various 

signature lengths was not solved
[9]. The string 

matching architecture in [10] had two-stage 

DFA-based string matching architecture with parallel 

bit-split string matchers in both stages. Even though 

the problem of various signature lengths can be 

solved somewhat, the memory requirements of the 

first stage increased. In addition, there were separate 

short pattern and remnant pattern matchers in [10], 

which made the implementation of the string 

matching engine complex.

This paper proposes a two-stage string matching 

engine using CAM and bit-split string matchers in 

the first and second stages, respectively. Each 

signature is divided into subpatterns with the same 

length. Subpatterns are mapped onto the CAM rows 

in the first stage, which reduces the required CAM 

size, compared to the traditional CAM-based string 

matching. In addition, the memory requirements of 

the first stage increase proportional only to the 

subpattern length. In the second stage based on the 

Aho-Corasick algorithm, long signatures can be 

recognized using the sequence of match vectors 

from the first stage. By applying a heuristic 

algorithm for the signature mapping in the second 

stage, the proposed architecture reduces the memory 

requirements of the bit-split string matchers.

Ⅱ. Proposed Architecture

Fig. 1 shows an example of the proposed parallel 

string matching architecture. Each long signature is 

divided into multiple subpatterns with the same 

length and a remnant pattern like [10]. However, in 

the proposed architecture, by adopting CAM in the 

first stage, short pattern and remnant pattern 

matchers are eliminated, which reduces the 

complexity of implementing the string matching 

engine. The first stage of the proposed string 

matching engine detects the matches with 

subpatterns. For example, a signature “aabbcdd” can 

be divided into subpatterns “aa,” “bb,” “cd” with 

two characters and a remnant pattern ‘d.’ The 

character ‘x’ or don’t care is added to the remnant 

pattern to make the remnant pattern length equal to 

the fixed subpattern length. Therefore, the signature 

“aabbcdd” is matched when subpatterns “aa,” “bb,” 

“cd,” and “dx” are matched in order. 

When each subpattern is matched in the first 

stage, the match vector for the subpattern is 

generated from the first stage. The match vector 

from the CAM is inputted to the second stage. With 

the match vectors from the first stage, the bit-split 

FSMs are constructed in the second stage. When the 

total number of subpatterns is u, the number of bits 

of a match vector is ⌈log2u⌉.  

Each match vector is split into multiple bit inputs 

for the bit-split string matching. In the example of 

Fig. 1, two bits are inputted to each memory-based 

FSM tile. The second stage has parallel 
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그림 3. FSM 타일의 상태 천이의 
Fig. 3. An example of state transitions in FSM tiles.

그림 2. 2단의 FSM 타일
Fig. 2. FSM tile in the second stage.

homogeneous string matchers, where the maximum 

number of signatures to be mapped in a string 

matcher is limited. Because each signature consists 

of multiple characters, states should be buffered into 

registers to handle each character input. For 

example, when the length of subpatterns mapped 

onto the first stage is two, signatures “abab” and 

“ba” are assumed to be searched. The first signature 

can be matched when characters are inputted as a → 

b → a → b. In this case, the subpattern “ab” is 

matched twice in sequence. In addition, the second 

signature “ba” is matched because “ba” is composed 

of the last and first characters of a subpattern “ab” 

for the first signature. 

Fig. 2 shows an FSM tile in the second stage. To 

deal with the signature matching at different time, l 

registers are inserted to buffer transitions between 

states in the FSM tile, where l is the length of 

subpatterns in the first stage. When the output state 

is reached, the partial match vector (PMV) for the 

original signature is outputted from each FSM tile. 

In this case, PMVs are buffered for the signature 

matching at different time in Fig. 2. With the 

bitwise AND operation of all PMVs from FSM tiles 

like [9], the full match vector (FMV) is obtained, 

where each bit in FMVs shows whether its related 

signature is matched or not.

Fig. 3 shows an example of state transitions in 

FSM tiles for the second stage. According to the 

input, state transitions can happen. In Fig. 3, the 

target signature is “aabbcdd.” This example assumes 

that four-bit match vector from the first stage. In 

this example, the matches with “aa,” “bb,” “cd,” and 

“dx” can generate the match vectors of “1000,” 

“1001,” “1010,” and “1011,” respectively. In 

addition, the matches with “aa,” “bb,” “ef,” and 

“kx” can generate the match vectors of “1000,” 

“1001,” “1110,” and “1111,” respectively. When 

match vectors “1000,” “1001,” “1010,” and “1011” 

are inputted into the second stage in order, the 

signature “aabbcdd” is matched. Each group of two 

bits is inputted into each FSM tile. The binary 

number on the upper side of left tables means input 

value. Each row indicates the state, where next state 

pointers are stored according to the input values. 

According to the high-order two-bit input, the output 

states for signatures “aabbcdd” and “aabbefk” can 

be four and six, respectively. The PMIs related to 

the output states contain pointers towards their 

PMVs. When the first and second bits in PMVs 

indicate the matches with “aabbcdd” and “aabbefk,” 

the values can be true or one in the first and fourth 

rows in the upper PMV table. On the other hand, 

the sequences of the low-order two-bit inputs for the 

two signature matches are the same. Therefore, both 

the first and second bits in the lower PMV table can 

be true or one simultaneously. In order to know 

which signature is matched, the PMV values from 

the upper and lower PMV tables are bitwise 

ANDed.

Ⅲ. Signature Mapping onto the Proposed 
String Matching Engine

In order to map signatures, signatures are divided 

and unique subpatterns with the same length are 
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stage width 3 4 5 6 7 8

first
#subpatterns 12.5K15.6K17.7K17.1K16.9K16.0K

#CAM(Kbyts) 37.8 62.4 88.4 102.3 118.3 128.2

second
#matchers 611 427 365 302 297 259

#Mem(Kbytes) 1760 1230 1051 870 855 746

표 1. 1단에서의 CAM 비에 따른 실험 요약
Table 1. Experimental summary according to CAM width 
in the first stage.

obtained. A sequence of match vectors from the first 

stage for each long signature can be the input for 

the signature matching in the second stage. The set 

of the match vector sequences is partitioned into 

multiple subsets for homogeneous string matchers in 

the second stage. In this case, the maximum 

numbers of matched signatures and states in each 

FSM tile are considered. For the signature mapping 

of the second stage, the heuristic algorithm in [11] 

is applied to reduce the required number of string 

matchers in the second stage. In this algorithm, after 

obtaining the initial set with lexicographical sorting 

for each string matcher, the algorithm searches for 

other match vectors to be mapped simultaneously 

onto the string matcher of the second stage greedily. 

As shown in Fig. 4, the maximum number of 

signatures in a string matcher is adopted. After 

constructing DFAs, if the resource limitation is not 

met, the number of mapped signature in a string 

matcher decreases. The signature mapping is 

repeated until there are no unmapped match vectors 

for the second stage. 

그림 4. 한 문자열 매처의 시그 처 매핑 과정 
Fig. 4. Signature mapping in a string matcher.

Ⅳ. Experimental results

4.1 Experimental data
The evaluations were performed using a set that 

consists of 7784 unique signatures from Snort 

v2.8
[12]. Because this architecture was composed of 

CAM and memory-based FSMs, the memory 

requirements of the first and second stages were 

individually analyzed. For the first stage, evaluations 

were performed by varying CAM width from 3 to 

8. Table 1 summarizes the memory requirements 

according to the CAM width of the first stage. 

Because the maximum length in the signatures set 

was 122, if target signatures were not divided into 

subpatterns, 950 Kbytes were required to map total 

rule sets using only CAM. Therefore, by dividing 

signatures into multiple subpatterns, the required 

CAM size can be greatly reduced; for example, 

when CAM width was 4, CAM size was only 62 

Kbytes. When CAM width changed from 3 to 4, the 

number of unique signatures increased greatly; on 

the other hand, when CAM width changed from 6 

to 7, the number of unique signatures decreased 

slightly. However, CAM size increased with CAM 

width in all cases. Considering the TCAM sizes in 

[5-7], which were over one mega bytes, the 

proposed string matching required small TCAM in 

the first stage. 

For the second stage, the maximum number of 

states in an FSM tile of the string matcher, S was 

set as 64 or 128, considering the maximum signature 

lengths of the Snort rule set. Experiments were 

processed with varied numbers of bits in a PMV, P 

from 16, 32, 48, and 64. Considering the previous 

studies in [9] and [10], the number of input bits in 

an FSM tile was set as two. In addition, the number 

of FSM tiles in each string matcher was fixed as 8. 

In order to show the effectiveness of signature 

mapping in the second stage, the previous signature 

mapping approaches with the original order and 

lexicographical sorting in [9] were evaluated, which 

were denoted as origin and lexical, respectively. In 

[10], each input bit for an FSM tile input was 

selected from both the most significant bits (MSBs) 
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method pros cons

TCAM simple high power&price

bit-split
general SRAM,

high performance

many small separate 

memory blocks

proposed

small TCAM size, 

high performance 

(~x3)

both SRAM and 

TCAM

표 3. 표 방법의 장단  비교 
Table 3. Summary of pros and cons. 

#CAM width 3 4 5 6 7 8

origin 779 541 467 362 360 298

origing 770 525 458 355 355 291

lexical 727 504 420 338 343 287

lexicalg 675 454 376 316 313 266

proposed 611 427 365 302 297 259

표 2. 2단에서의 요구되는 문자열 매처의 개수  
Table 2. Memory requirements in terms of required 
number of string matchers in the second stage.

and least significant bits (LSBs) of the byte input 

alternately. This input bit grouping method was 

applied to the signature mapping approaches with 

the original order and lexicographical sorting, which 

were denoted as origing and lexicalg, respectively.

In the experiments, the memory requirements for 

the second stage can be minimized when S and P 

were 64 and 32, respectively. In Table 1, the 

required numbers of string matchers and its memory 

requirements are shown by sweeping CAM width 

when S and P are 64 and 32. By increasing the 

CAM width, the memory requirements of the second 

stage were reduced, which means that the number of 

unique subpatterns decreased with CAM width. In 

this case, when CAM width was 8, the number of 

required string matchers and the memory 

requirements were 259 and 746 Kbytes.

4.2 Comparisons and discussion
Table 2 shows memory requirements in terms of 

the required number of string matchers in the second 

stage. As the CAM width increased, the number of 

match vectors decreased; therefore, the reduced 

number of string matchers can decrease. In addition, 

the ratio of reduced memory requirements decreased. 

This can be mainly due to the decrease of the 

signature lengths in the second stage. The required 

numbers of string matchers in the second stage were 

reduced by 27.9%-15.1%, 26.0%-12.3%, 

19.0%-10.8%, and 10.5%-2.7%, compared to the 

cases of origin, origing, lexical, and lexicalg, 

respectively. Therefore, it was concluded that the 

number of string matchers in the second stage was 

decreased by applying the heuristic algorithm in [11] 

without additional hardware. In order to know the 

performance of the proposed string matching engine, 

when CAM width was 8, the main blocks were 

implemented using an Xilinx field programmable 

gate array (FPGA)
[13]. The maximum clock speed of 

the second stage was 370 MHz. When multiple 

CAM blocks with 2048 entries were used, the 

maximum clock speed in the first stage was 81 

MHz. In this case, the throughput can be 648 Mbps. 

On the other hand, when the number of entries was 

128 in each CAM block, the maximum clock speed 

increased up to 102 MHz. Therefore, as the number 

of TCAM entries increased, it was concluded that 

the maximum clock speed decreased in the FPGA 

implementation. In addition, considering the speed 

of TCAM slower than that of the general memory, 

the speed was limited in the first stage when the 

proposed string matching engine was implemented 

using FPGA.

On the other hand, the stand-alone commercial 

TCAM in [14] was considered to analyze the 

performance of the proposed string matching engine. 

In [14], the maximum clock speed was 360 MHz. 

Considering the maximum clock speed in the second 

stage implemented in the FPGA above, the speed of 

the second stage was sufficient to meet the 

performance of the first stage. According to the 

clock speed of TCAM, the maximum throughput can 

be 2.88 Gbps. Compared to the multi-cycle loops (2 

or 3 clock cycles) in the previous TCAM-based 

string matching methods
[5-7], the proposed string 

matching engine generated the match vector at each 

clock cycle in the first stage. In addition, the second 

stage obtained FMVs at each cycle in a pipelined 

manner. Therefore, the performance of the proposed 

string matching engine can be enhanced twice or 

three times. In Table 3, the pros and cons are 

summarized by comparing the proposed and 
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previous works. 

Ⅴ. Conclusion

The proposed string matching adopts small CAM 

and bit-split string matchers in two stages, so that 

the problem of various signature lengths can be 

solved with reduced memory requirements and 

complexity. Considering the experimental results 

above, the proposed two-stage string matching can 

reduce CAM size in the first stage and the required 

number of string matchers in second stage. 

Therefore, it is expected that the proposed two-stage 

string matching architecture is useful for reducing 

the storage cost in the DPI.
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