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요   약

상황 인식은 유비쿼터스컴퓨팅 환경에 대한 진화를 변화시켰고 무선 센서네트워크 기술은 많은 응용기기에 대

한 새로운 방법을 제시하였다. 특히, 행동 인식은 사람의 응용서비스를 제공하는데 있어 특정 사용자의 상황을 인

식하는 핵심 요소로 의학, 취미, 군사 분야에서 폭넓은 응용분야를 갖고 있고 사용반경의 확대에서도 효율과 정확

도를 높이는 방법에 크게 기여한다. 스마트폰 센서로부터 나오는 데이터로부터 프레임이 512인셈플 데이터를 얻

어, 프레임간50%의 오버랩을 갖도록 하고 Machine Learning Algorithm 인 WEKA Experimenter (University of 

Waikato, Version 3.6.10)을 써서 데이더로부터 시간영역 특징값을 추출함으로써 행동 인식에 대한 99.33%의 정

확도를 얻을 수 있었다. 또한, WEKA Experimenter의 사용기법인 C4.5 Decision Tree과 다른 방법인 BN, NB, 

SMO or Logistic Regression간의 비교실험을 하였다.

Key Words : sensor fusion, activity recognition, classification algorithms, feature extraction

ABSTRACT

Activity recognition is a key component in identifying the context of a user for providing services based on 

the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, 

as observed in many previous investigations, we are proposing the use of smartphone with its built-in multimodal 

sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to 

previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. 

The evaluation indicates that the IBK classifier using window size of 2s with 50% overlapping yields the highest 

accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain and frequency-domain features 

were extracted from raw sensor data of the smartphone
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Ⅰ. Introduction

Cruise tourism is a fast growing and important 

branch of tourism. Thousands of tourists travel 

around the globe while staying at a sailing hotel, 

dining in a floating restaurant for days to months. 

Therefore, it is vital to keep track of their health 

while onboard cruise ships. Over the last few years, 

activity recognition using accelerometer signals has 

become an active research area due to its large 

number of potential applications including 

context-awareness, healthcare, and active lifestyle 
[1,2]. 

For instance, patients with diabetes, cardiovascular 

disease, insomnia or obesity often follow well 

defined exercise routines (walking, jogging, running, 

or cycling) as a part of their treatment. Such human 

activities can be recognized by motion pattern 

analysis using wearable sensors, but this solution is 

obtrusive, and few users want to wear special shirts, 

bracelets or belts for that purpose
[3,4]. Although this 

provides sufficient contextual information, placing 

sensors at multiple locations can become 

cumbersome for the wearer. With the increase in 

number of sensors, it also increases the complexity 

of the classification problems and the overall cost of 

the system.

Mobile phones have become a practical and 

popular activity tracking platform because people are 

accustomed to carry phones on a daily basis. This 

makes data easier to collect as compared to custom 

tracking systems. In addition, mobile phones 

eliminate the need to design custom hardware, 

because they have built in sensors, (such as 

tri-accelerometer, gyroscope, and magnetic sensor), 

Global Positioning System (GPS), Wi-Fi, Bluetooth, 

camera, proximity sensor, microphone, and so forth. 

Furthermore, software creation and distribution are 

easier because open source tools allow anyone to 

create applications and deploy them on mobile 

phones. Thus, mobile phones conveniently contain 

all of the hardware and software capabilities to 

create a stand-alone activity tracking sys-tem, with 

the practical benefit that people wear them every 

day.

Most of the previous studies only utilized 

accelerometer data acquired from the smartphone for 

physical activity recognition [5-7]. Lara et al. [8] 

introduced a mobile platform for real-time human 

activity recognition. Their system is composed of a 

wearable device and a Bluetooth-enabled Android 

phone; experiments were performed in a sequential 

fashion which recognized walking, running and 

sitting activities. They analyzed the C4.5 tree family 

classification algorithm and produced acceptable 

results. In [5] Ravi et al. reported the results of their 

study for a small group of dynamic activities using 

a single triaxial accelerometer worn near the pelvic 

region. Four features were extracted from the 

accelerometer data (i.e., mean, standard deviation, 

energy, and correlation). In order to perform the 

classification task, they analyzed the performance of 

base-level classifiers and meta-level classifiers on 

two subjects, and achieved high accuracy. The 

sampling frequency was 50 Hz and window size 

was 5.12 seconds. They used the Plurality Voting 

classifier but complication may arise while 

increasing the number of subjects as well as 

dynamic activities. Zhao et al. developed a 

smartphone based activity reporting system using a 

three axial accelerometer. The system used decision 

tree and k-means clustering algorithm to recognize 

user’s activity
[9].

However, accelerometer data only reflects the 

change of physical activity in linear acceleration, but 

angular velocity and orientation information were 

not reflected by an accelerometer. Generally, 

acceleration sensors have been applied in most of 

the physical activity recognition research works 

because they are small, inexpensive, light-weight, 

and consume little power [10]. However, the fusion 

of multiple sensors including several accelerometers, 

gyroscopes, GPS, camera, and infra-red (IR) motion 

detectors not only improves the results but is rather 

mandatory for an accurate activity recognition 

system, as noted by Kern, et al. [11]. In this 

research, a smartphone such as Samsung Galaxy S2 

is employed as a multiple sensor device for data 

collection to recognize the interesting activities for 

daily activity recognition.

Moreover, this is one of the first research works 
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Avg. Min Max

Age (years) 26 25 30

Weight (kg) 69 60 85

Height (cm) 172 162 187

BMI (kg/m2) 24.9 18.5 29.9

Table. 1. Summary of Physical characteristics of the 
participants.

Fig. 1. Smartphone Data collection app.

in the field of physical activity recognition of 

workers and passengers onboard ships using 

smartphone which attempts to consider a variety of 

sensor data (e.g., accelerometer, gyroscope, and 

magnetometer) and to find the best set of sensors for 

a specific application. The rest of the paper is 

organized as follows: Section II provides the method 

of the physical activity recognition. The 

experimental results and discussion are presented in 

Sections III. Finally, Section IV concludes the paper.

Ⅱ. Methodology

2.1 Data Collection
To collect the activities dataset, four healthy 

subjects (2 males and 2 females) of different ages 

(between 25 and 30), heights and weights 

participated in this study. The characteristics of the 

participants are shown in Table 1. Participants were 

graduate students of Mokpo National University, 

Department of Electronics Engineering.

Six common dynamic activities were selected as 

the basic activities of daily life to be recognized—

walking, running, sitting, walking upstairs, walking 

downstairs and standing. A custom smartphone 

application was designed for data collection and 

annotation as shown in Fig 1. This application 

collects data from an accelerometer, a gyroscope and 

a magnetometer at 50 Hz and stored it on a SD card 

for offline analysis. Previous studies have claimed 

that sampling frequency between 22 Hz and 100 Hz 

is suitable for classifying different physical 

activities
[12]. Before performing each activity, the 

subject would select the activity on a designed 

phone app. Each subject was requested to perform 

these activities in a naturalistic fashion (without 

fixed duration or sequence). The smartphone was 

placed in the front pant pocket regardless of its 

orientation to record the activities. A pant pocket 

location is an acceptable solution from the user’s 

point of view, if the user wishes to use the 

smartphone for activity recognition.

A representative data stream of all the three 

sensors for each activity is shown in Fig 2 to 

understand the difficulty of recognition. It can be 

observed from Fig 2 that sitting and standing do not 

show periodic behavior, but do have distinctive 

patterns while the other four activities which involve 

repetitive motions do illustrate periodic behavior 

based on the relative magnitudes of the x, y, and z 

values. For most activities, the larger variation is 

along y-axis values. To distinguish these minor 

differences in the data for the performed activities, 

we investigate suitable feature extraction methods 

for these dynamic activities.

2.2 Feature Extraction
The raw sensor data was labeled based on the 

performed activity. There were approximately 

30,000 samples for each activity with a total of 

160,200 samples. To recognize activity information, 

a feature-level fusion scheme is applied using the 

extracted features from each sensor instead of the 

raw sensor data. Since the extracted feature set 

contains richer information, integration at this level 

provides better recognition results. As the fusion 
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Fig. 2. Raw signal plots for the six different activities being studied.

Fig. 3. Multi-sensor data fusion.

does not use the raw sensor data, the scalability and 

sensor independency is increased; however, it 

requires transforming raw data to an appropriate 

features. Fig. 3 illustrates the procedure of feature 

level fusion by integrating multi-sensors data.

Smartphones are embedded with a high quality 

sensors which can measure and report values in 

three perpendicular directions (x, y, z). For example, 

the measurement range of the accelerometer is 

between -2g and +2g. The three measured 

acceleration value represent the direction of the 

acceleration, relative to the phone. While 

information for x, y and z accelerations can be 

extremely useful in the case of body worn sensors, 

where the orientation of a sensor is fixed, such 

regime of operation cannot be expected in our case. 

Since a phone is a portable device, it is obvious that 

its position varies from person to person. Therefore 

to overcome the problem of orientation, these three 

values are then preprocessed and combined into a 

single value, which represents the magnitude of the 

sensor. Obtaining the magnitude r from the 

measurements (x, y, z) is simply done by taking the 

Euclidean norm i.e.:

    (1)

This magnitude of the sensor is independent of 

the orientation of the phone adding an addition 

dimension for each sensor i.e., x, y, z and 

magnitude.

The sliding window method with 50% overlap 

was employed to divide the sensor signals into 

smaller time windows. Feature extraction on sliding 

windows with a 50% overlap has demonstrated 

reasonable results in previous works
[3,5]. This 

window size is capable of capturing complete cycles 

in repetitive action activities such as walking, 

running and stair walking, whilst allowing for fast 

computation of features. At a sampling frequency of 

50 Hz and window size of 2 seconds, each window 

with 50% overlap represents 1 second. The features 

were extracted from the sliding windows signals for 

activity recognition. Window size of 2 seconds was 

selected based on the previous studies
[13,14]. Seven 

time-domain and one frequency-domain feature was 

extracted from each sliding window, giving a total 

of 28 attributes per sensor and 28 x 3 = 84 

attributes for all three sensors. The choice of simple 
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No. Feature Description
features 

generated

1
Minimum value for each axis (x,y,z 

and magnitude)
4

2
Maximum value for each axis (x,y,z 

and magnitude)
4

4
Standard Deviation for each axis 

(x,y,z and magnitude)
4

3
Mean value for each axis (x,y,z and 

magnitude)
4

5
Kurtosis value for each axis (x,y,z 

and magnitude)
4

6
Skewness value for each axis (x,y,z 

and magnitude)
4

7 Average energy over 3 axes 1

8 Inter-axis Correlations: xy, xz,yz 3

Table. 2. Summary of the set of features extracted.

statistic features is due to the simplicity and low 

computational cost. A description of each feature is 

presented in Table 2. These features have been used 

within previous works and have achieved acceptable 

levels of accuracy (~85%)
[3,5,15].

Features 1-6 are standard time-domain statistical 

metrics. Feature 7-Energy is the sum of the squared 

discrete FFT (Fast Fourier Transform) component 

magnitudes of the signal. The sum is divided by the 

window length for the purposes of normalization and 

is presented as:

 


 






(2)

where  are the FFT components of the window 

for the x-axis and   is the length of the window. 

Feature 8- Correlation has been shown to improve 

the detection of activities involving movements of 

multiple body parts [16]. Correlation is calculated 

between each pair of axes as the ratio of the 

covariance and the product of the standard 

deviations and is given by Equation 3:

  


(3)

These features are then used as an input for 

WEKA data mining software to train and build the 

classifiers. WEKA[17] is a collection of machine 

learning algorithms and offers a collection of 

visualization tools for data mining tasks.

2.3 Classification Models
One of the aims of this study is to investigate 

how well could the multi-modal sensors in a 

smartphone be used for movement recognition 

similar to the previous accelerometer based 

approaches. Various different classification models 

have been applied to the problem of human activity 

recognition. However, there is no universally 

accepted method of recognizing a particular set of 

activities and all approaches have associated 

limitations and benefits. For this study, in order to 

identify which machine learning algorithm provided 

the most accurate activity detection, six different 

classification algorithms were applied to the data. 

These include: BN (Bayesian Network), NB (Naïve 

Bayes), J48 (C4.5 Decision Tree), SMO (Sequential 

Minimal Optimization), Logistic Regression and IBK 

(Nearest Neighbor with K=1). To identify which 

machine learning model achieved the best accuracy, 

a 10-fold stratified cross validation with ten 

iterations was performed using WEKA experimenter. 

In practice, a 10-fold cross validation is the most 

widely used methodology to calculate the accuracy 

of a classifier
[18].

Ⅲ. Activity recognition analysis and 
Discussion

3.1 Evaluation using different combination of
sensors

The best set of sensors for physical activity 

recognition is the ones with the highest correlation 

with the different activity classes. Accelerometer 

sensors have been widely used for motion detection. 

Gyroscope is useful for capturing user’s motion and 

device orientation changes. Orientation determination 

is a significant feature to distinguish among sets of 

on-body device placements and determining the 

device orientation in each placement. Magnetometer 
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Fig. 4. Classification accuracies of various classifiers with 
different fusion of sensors

Average Accuracy with Different Features (%)

Classifiers
All 

Features

Time 

Domain

FFT 

Energy

J48 97.36 97.36 79

NB 95.93 96.06 68.75

BN 97.72 97.88 75.42

SMO 98.79 98.79 65.5

Logistic 98.76 98.51 75.82

IBK 99.33 99.4 75.4

Table. 3. Evaluation results with different combination of 
features, sampling rate=50 Hz, window length = 2s and 
overlap percentage = 50%.

Fig. 5. Classification accuracy comparison based on Table 3.

sensor also helps determining the orientation as well 

as absolute heading information. The purpose of this 

experiment was to evaluate the performance of 

different sensors and their combinations using 

simple time-domain and frequency-domain features 

in order to assess which is the best combination for 

activity recognition. Six different classification 

models were evaluated with four different 

combinations of sensors. The results of activity 

recognition using different sensors have been 

investigated for the whole dataset. Fig 4 illustrates 

the overall classification accuracies of using 

different classifiers with all the features. It can be 

observed that, when used alone, accelerometer 

sensor data produced reasonable recognition 

accuracy, however, when combined with gyroscope 

and magnetometer, the overall performance was 

better than their individual performances in each 

case. Combining accelerometer with the gyroscope 

resulted in high recognition accuracy except for BN 

where performance was better for accelerometer 

combined with magnetometer. For the two-sensor 

combination, accelerometer with gyroscope (Acc+ 

Gyro) produced the best results. However, the 

optimum performance was achieved when all the 

sensors (Acc+Gyro+Mag) were used at the same 

time. It can be concluded that when considering a 

large number of activities for daily physical activity 

recognition, a single sensor might not produce best 

recognition accuracy; therefore, fusing the 

information from different smartphone sensors can 

improve the recognition performance drastically. 

3.2 Activity recognition using different
combination of features

The experiment in this section was carried out 

using different set of features computed from all the 

three sensor data. These features were maximum, 

minimum, mean, standard deviation, kurtosis, 

skewness, inter-axis correlation and FFT energy. 

This section elaborates the repetition of 10-fold 

cross validation evaluation on the recommended 

classifiers with one of the features removed i.e.; 

effect of using only time-domain features, only 

frequency-domain features and combination of all on 

the recognition accuracy. The results and 

comparisons of the 10-fold cross validation of the 

various classifiers with a certain feature removed 

from the training data are listed in Table 3 and Fig 5. 

From Fig 5, using only time-domain features, 

from all feature set, did not produce accuracy that 

was statistically different with reference accuracy for 

all features. However, the removal of time-domain 

features (using only frequency-domain features) had 

caused the accuracy for all the classifiers to drop up 

to average of 23%. The IBK classifier had shown to 
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Classification Accuracy (%)

Activity BN IBK J48 Logistic NB SMO

Downstairs 98.71 97.94 94.85 96.4 93.56 97.42

Running 96.48 99 97.48 98.15 96.48 97.82

Sitting 99.67 100 100 99.83 99.51 100

Standing 100 100 99.67 99.67 99.02 100

Upstairs 94.27 98.9 94.93 98.68 88.11 98.68

Walking 96.7 99.52 95.8 98.9 96.07 98.27

Average 97.72 99.33 97.36 98.76 95.93 98.78

Table. 4. Percentage of correctly classified instances for 
each activity using each of the six different classification 
algorithms. Results show the average percentage correctly 
classified instances for the 10 fold 10 iteration tests.

Fig. 6. Classification accuracy for each activity based on 
Table 4.

be the best classifier in this case with overall 

recognition accuracy of 99.33% using full feature set 

and 99.4% when evaluated with only time-domain 

features.

From the above observations, the results 

suggested that the classifiers built with only 

time-domain features provided comparable and 

acceptable accuracies as the classifier built with all 

feature sets. Based on these results, in cases where 

computing resources are limited, FFT- based 

features can be excluded and it is still possible to 

obtain equivalent recognition accuracies.

3.3 Offline recognition via 10-fold stratified
cross validation

The purpose of this experiment was to compare 

the performance of different classifiers using all the 

features for each different activity. However, it is 

difficult to directly compare different classification 

algorithms due to lack of universally accepted 

quantitative performance evaluation measures. Some 

researchers have used overall accuracy and 

F-measure as a performance index
[15] while others 

have used True Positive rate (TPR)
[19]. Therefore, 

this work adopts a similar evaluation approach. The 

10-fold stratified cross validation with 10 iterations 

is used to evaluate the performance of different 

classifiers. After 10 iterations, the average 

classification accuracy is computed and reported as 

the overall accuracy. Fig. 6 shows the physical 

activity recognition rate for BN, IBK, J48, Logistic, 

NB and SMO classifiers using all the features. It 

can be observed that in most cases high levels of 

accuracy was achieved. For the two most common 

activities, standing and sitting, BN, IBK, J48 and 

SMO achieved accuracy of 100%. By investigating 

each activity’s recognition rate, it can be inferred 

that the classification models distinguish between the 

device placements and user activities with an overall 

accuracy of greater than 95%. In conclusion, the 

IBK classifier provided an overall highest 

recognition accuracy of 99.33%, classifying 

activities sitting and standing with an accuracy of 

100%.

Ⅳ. Conclusion

This work contributes to the physical activity 

recognition domain using unobtrusive devices by 

multi-sensor information fusion. Three smartphone 

sensors, i.e.; accelerometer, gyroscope and 

magnetometer are used to recognize six daily 

physical activities. This research focuses on 

evaluation analysis of classifiers’ accuracy and 

providing reliable results for selecting the best set of 

sensors and features to optimize the performance of 

activity recognition applications for smartphones. As 

an improvement to previous works, accelerometer, 

gyroscope and magnetometer data are fused to 

recognize activities more reliably. The evaluation 

indicates that the IBK classifier using window size 

of 2s with 50% overlapping yields the highest 

accuracy (i.e., up to 99.33%). To achieve this peak 

accuracy, simple time-domain and frequency-domain 

features were extracted from raw sensor data of the 
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smartphone.
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