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요   약

압축 센싱에서 측정 행렬 의 3-Restricted Isometry Constant가  혹은 보다 작다면 모든 -Sparse 

벡터 ∈는 측정 벡터  또는 잡음이 섞인 벡터 로부터 Iterative Hard Thresholding (IHT) 알

고리즘에 의해 복원될 수 있다. 하지만, 이러한 복원은 신호 획득 기법의 특정한 가정 하에서 실질적인 알고리즘

들에 의해 보장된다. 복원을 위한 핵심적인 가정 중에 하나는 측정 행렬이 Restricted Isometry Property (RIP)를 

만족해야만 하는 것인데, 이 조건은 압축 센싱의 실제 응용 환경에서 종종 만족되지 않는다. 본 논문에서는 이방

성 (Anisotropic) 경우에서 Restricted Biorthogonality Property (RBOP)로 불리는 RIP의 일반화와 Oblique Pursuit

으로 불리는 새로운 복구 알고리즘들을 분석한다. 또한, IHT 알고리즘들을 위해 Restricted Biorthogonality 

Constant의 관점에서 성공적인 Sparse 신호 복원에 대한 분석을 제시한다.

Key Words : Compressive Sensing, Biorthogonality, Oblique Projection, Restricted Isometry Property,

Iterative Hard Thresholding

ABSTRACT

It has been shown in compressive sensing that every -sparse ∈  can be recovered from the measurement 

vector  or the noisy vector  via -minimization as soon as the -restricted isometry constant of 

the sensing matrix  is smaller than  or smaller than   by applying the Iterative Hard Thresholding 

(IHT) algorithm. However, recovery can be guaranteed by practical algorithms for some certain assumptions of 

acquisition schemes. One of the key assumption is that the sensing matrix must satisfy the Restricted Isometry 

Property (RIP), which is often violated in the setting of many practical applications. In this paper, we studied a 

generalization of RIP, called Restricted Biorthogonality Property (RBOP) for anisotropic cases, and the new 

recovery algorithms called oblique pursuits. Then, we provide an analysis on the success of sparse recovery in 

terms of restricted biorthogonality constant for the IHT algorithms.
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Ⅰ. Compressive Sensing

Compressive Sensing (CS) is a new approach to 

data acquisition, which allows to reconstruct a signal 

from fewer sample or a smaller number of 

measurements than Nyquist’s rate, as long as the 

signal is sparse and the measurement is incoherent 
[1]. The process of acquiring compressed 

measurements is called the sensing and the 

recovering the original sparse signal from 

compressed measurements is called the 

reconstruction. Let ∈ be an unknown signal, 

and ∈×   be the measurement 

matrix. Then, the measurement is expressed as

  , (1)

where ∈denotes the additive noise.

In the conventional paradigm, CS aims to 

reconstruct signals that are approximately -sparse 

over a dictionary ∈×  from the compressed 

measurements . Let ∈ be the coefficient 

vector of  over  such that ≈  with  

being -sparse (i.e.,  ≤  ≪). Then, the 

composition  can be viewed as a sensing 

matrix for   that produces the compressed 

measurement vector  .

 . (2)

The Basis Pursuit (BP) problem in CS is to find 

the sparsest solution which has a minimal number of 

nonzero components by solving the following 

convex optimum problem.


∈    ≤  ()

There are basically two approaches to solve 

().  First, we can exactly recover   via 

-minimization by solving the problem (). The 

second method is using greedy algorithms for 

-minimization, such as Subspace Pursuit (SP), 

Compressive Sensing Matching Pursuit (CoSaMP), 

Orthogonal Matching Pursuit (OMP), Iterative Hard 

Thresholding (IHT), Hard Thresholding Pursuit 

(HTP) or their modifications[2-7].

The solution of () is guaranteed to be unique 

as soon as the measurement matrix  satisfies the 

following -Restricted Isometry Property (-RIP).


 ≤ 

 ≤ 
∀ ≤  (3)

The smallest number   is called -Restricted 

Isometry Constant (-RIC) of order  . 

The rest of this paper is organized as follows. 

Section II introduces the CS problem and the 

motivation of this paper. In Section III, we present 

the oblique compressive sensing for anisotropic 

cases and some highlighted results in terms of 

reconstruction algorithms. Section IV provides a 

analysis on oblique iterative hard thresholding 

algorithm, which is a modification of iterative hard 

thresholding one in anisotropic cases. Section V 

concludes this paper.

Notations: We denote  as × identity 

matrix. ⋅ denotes the transpose operation, ⋅ 

denotes the -norm,     denotes the 

number of elements in a given set  , and ⋅  

denotes the expectation operator. The -norm of a 

vector   ⋯  is defined as 

  










. Note also that 

       ≠   ⋯. We call 

a signal   is a s-sparse vector if  ≤  . We 

denote   as the index set satisfying  ⊆ ⋯ 

and ⋯╲  as its complement. 

Ⅱ. Compressive Sensing Problem and 
Motivation

We consider a fixed vector ∈ as a 

measurement vector which is taken from   linear 

measurements of an unknown signal ∈ for 

some ×≪  sensing matrix . It has 

been shown that if  , the signal   can 

www.dbpia.co.kr



논문 / Oblique Iterative Hard Thresholding 알고리즘을 이용한 압축 센싱의 보장된 Sparse 복원

741

be perfectly recovered from noise-free measurements 
[8]. More conditions on the RIC values can be found 

in [9-11]. The RIP is a sufficient and necessary 

condition which guarantees unique and exact 

reconstruction of sparse signal via -minimization. 

The key assumptions of RIP guaranteed recovery are 

(i) isotropy property   , and (ii) 

incoherence ≤  . However, in many 

practical applications, the isotropy property is not 

negligible as well as finding a small -RIC. An 

example for those cases has been shown in [12]. 

Moreover, greedy recovery algorithms which are 

computationally efficient alternative solutions have 

been studied intensively in the isotropic cases, while 

their performance in the anisotropic case has not 

been much studied yet. 

To tackle these issues, a generalized RIP called 

Restricted Biorthogonal Property (RBOP) and some 

modified versions of greedy algorithms called 

oblique greedy pursuits have been proposed [12]. 

The Oblique Iterative Hard Thresholding (ObIHT) is 

one of oblique pursuit algorithms with RBOP-based 

guarantees. It can be described as follows. From a 

reasonable guess for  , they start with a vector  

satisfying   . For a given iterate , they 

generate a new iterate  such as

  

 (4)

where ⋅  is a nonlinear operation, which keeps 

 largest entries of a vector and set other ones to 

zeros and  is the matrix that satisfies RBOP and 

be discussed in the next section. They also update

   (5)

 ∪      (6)

    ⊆ (7)

 
   (8)

The road map of finding solutions for the 

anisotropic cases can be summarized as follows. 

First, we extend the RIP of  to RBOP of 

. 

Second, we construct the matrix  that satisfies 

RBOP, i.e., 

  . Finally, we modify the 

RIP-guaranteed IHT algorithm to RBOP-guaranteed 

ObIHT algorithm.

Ⅲ. Oblique Compressive Sensing for 
Anisotropic Cases

In this section, we will introduce the Oblique 

Compressive Sensing (OBS) concepts in terms of 

Restricted Biorthogonality Property (RBOP) and 

oblique greedy pursuit algorithms. We also show 

that the RBOP is a generalized form of RIP and the 

oblique greedy algorithms are the correspondingly 

modified versions of existing greedy pursuit 

algorithms.

3.1 Definition

Definition 1 (-RBOC). The -Restricted 

Biorthogonal Constant (-RBOC)   of 

∈×  is defined as the smallest  that satisfies

〈〉〈〉≤  (9)

for all -sparse vectors   with common support.

An alternative characterization reads

 ⊆   ≤  →, (10)

where 

→ ∈╲
〈〉   

              (11)

Definition 2 (-RBOP). A pair of matrices 

  satisfies the -RBOP if 


   (12)
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for some constants ∈ . Hence, 

   , i.e., if  the RBOP of    

reduces to the RIP of . For the composition 

, we find  and  so that    

and  ≪ . 

(i) Regarding the construction of , we assume that  

  is invertible, thus . It 

leads to   . 

(ii) Regarding the construction of , we consider 

two cases. If  coresponds to a basis in , 

i.e.,  , then let . 

Otherwise, if  satisfies the RIP with certain 

parameter, then let .

Finally, we obtain the construction of  that 

satisfies

   

Any   columns of  and  corresponding to the 

same indices behave like a biorthogonal basis. The 

small -RBOC 
  number implies that   

becomes close to   for all  ≤  . 

3.2 Existing Reconstruction Algorithms
If  satisfies the RIP, then its transpose matrix is 

used to compute the sparse solutions. Otherwise, in 

anisotropic  cases, one can employ a different matrix 

 to get a better solution. The required property is 

that ≈  for any -sparse vector ∈. 

Then, we properly use designed  instead of  

for recovery by using modified algorithms called 

oblique greedy algorithms. An oblique greedy 

pursuit algorithm consists of the following building 

blocks.

(i) Find the   indices ’s that maximizes . 

Various greedy pursuit algorithm provide an   

approximation of   of guaranteed inequality 

    for some ∈ and ∈ .
(ii) Find an approximation for the components of   

on   by solving the following weighted least 

squares

 



 (13)

that satisfies






╲ ╲. (14)

(iii) Use orthogonal matching to estimate support 

elements of   outside  . In this step, the 

oblique projection will be used instead of using 

the orthogonal projections in the conventional 

greedy algorithms.

Some modified greedy pursuit algorithms that use 

both  and  are Oblique Thresholding (ObThres), 

Oblique Matching Pursuit (ObMP), and Iterative 

Oblique Greedy Pursuit algorithms (ObCoSaMP, 

ObIHT, and ObHTP). If ∈ is an -sparse 

vector and the sequence   with the measurement 

  defined by the iterative greedy pursuit 

algorithm, then the sufficient conditions given a 

common form     for   converges to the 

vector  , are given in Table 1.

In the next section, we show that the RIP based 

guarantees of the IHT algorithm can be replaced by 

the similar guarantees of the corresponding ObIHT 

algorithms in terms of the RBOC, i.e., the condition 

    is guaranteed for the sequence   

with the measurement  , defined by the 

ObIHT algorithm, converges to the vector  , We 

then cover the more realistic situation of 

approximately sparse vectors measured with some 

errors, i.e.,  .

Algorithm   

SP  

CoSaOMP  

IHT  

HTP  

표 1. Isotropic 경우의 선형 수렴을 위한 RBOC 조건
[9]

Table 1. The RBOC conditions for linear convergence 
in isotropic cases[9]. 
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Ⅳ. Analysis on Oblique Iterative Hard 
Thresholding Pursuit Algorithm 

From previous section, we have known that the 

ObIHT algorithm is generalized from IHT one. It 

starts with an initial -sparse vector ∈, 

typically   , produces a sequence   defined 

by

 
  (15)

The following properties of the pair of matrices 

 , which are generalized from the properties of 

RIP
[13], carry over immediately to the -RBOC 

matrices.

Lemma 1. Let  denote the × identity 

matrix. Given vectors ∈∈ and an index 

set  ⊆  ⋯, we have

〈 〉≤ 
  ∪ ≤ 

(16)

  ≤ 
  ∪ ≤ 

(17)

 ≤     ≤  (18)

In practice, it is impossible to measure a signal 

∈ with an infinite precision. Thus, the 

measurement vector ∈ is approximated by the 

vector  with an error bounded by some 

positive constant   . In particular, for ∈, 

we have

 ≤  .

The reconstruction procedure performs well if the 

reconstruction error can be controlled by the 

measurement error. Thus, if   is an -sparse vector, 

i.e.,  on  , and  is the output of the 

reconstruction algorithm applied to   at the -th 

iteration, we wish to have the following inequality 

  ≤ ,

where the constant  depends on the sparsity. The 

following theorem gives us a  robustness inequality 

to obtain robust solution when reconstructing using 

the ObIHT algorithm.

Theorem 1. Suppose that    RBOC of the 

pair of matrices   satisfies

          (19)

If ∈ is an -sparse vector, then the 

sequence   defined by IHT algorithm with 

  converges to the vector  . Generally, if   

denotes an index set of   largest (in modulus) 

entries of a vector ∈ and if   for 

some error terms ∈, then

  ≤ 
   ≥  (20)

where 

   
   




.   (21)

Here,  is defined for any ∈ as

     ∈ 
       (22)

Proof. We desire to find a number ∈  such 

that   ≤ 
 ∀≥  Then, for 

some finite number of iterations, we obtain 

  ≤ 
 ∀≥  Taking 

→∞, (21) implies  →. We assume 

that the -sparse vector  is a better -term 

approximation to 

   

 
 
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than the -sparse vector . That implies

 
 ≤  

 (23)

The left-hand side of (23) can be expanded as 

follows.

 
   


 (24)

Expanding the right-hand side of (24) and 

eliminating  
 leads to, with 

′    and 

 ∪∪

 

≤ 〈  〉
                   

≤〈  ′ 〉        

≤〈〉
〈′〉

       

≤
→




′ 
≤ 




′  

Simplify by 

  ≤ 
   ′ 

we derive 

  ≤ 
   ′   

                   (25)

If   is an -sparse vector (  ) and the 

measurements are accurate (), then we obtain

  ≤ 
 . (26)

Thus, the sequence   converges to  as 

soon as ≤  , i.e.,   . We can use the 

same technique to prove the case of exactly sparse 

vector measured with imperfect accuracy.

We make some following remarks on the ObIHT 

analysis. First, since the conventional -norm-based 

methods in anisotropic cases do not perform as well 

as in the isotropic cases, we present a unified way 

to modify -RIP and the IHT algorithm into a new 

condition called -RBOP and new algorithm called 

ObIHT, respectively. Second, the RBOP-guaranteed 

ObIHT can be applied to practical applications of 

CS. Comparing to the corresponding conventional 

algorithm, ObIIHT inherits the advantage of low 

computational cost and overcome the disadvantage 

in the anisotropic cases, thus, it often significant 

better. However, simulation results and analysis for 

the anisotropy of other measurements (except 

random measurements) must be considered. We will 

investigate these issues as future works.

Ⅴ. Conclusion

In this paper, we presented the problem of finding 

sparse solutions for an undetermined system of 

linear equations in terms of RIP. Based on this 

property, many computationally efficient greedy 

algorithms have been proposed to solve the problem 

of best -sparse approximation. However, the 

isotropy property has only been shown under ideal 

assumptions, while it often violated in the setting of 

practical applications. Motivated by this, we study a 

generalized RIP called RBOP and present an 

extension of the IHT algorithm in terms of RBOC 

to solve the CS problem. Theoretical guarantees are 

presented and the analysis extends quite naturally. 
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