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요   약

압축센싱은 신호의 성긴 (Sparse) 성질을 활용하여 Nyquist 표본화율 보다 낮은 측정 율만으로도 신호의 완벽 

복원이 가능하다는 측면에서 새로운 샘플링 기술로 주목 받고 있다. 블록기반의 압축센싱 기술을 사용하여 영상을 

샘플링 하는 경우, 측정신호 영역에서도 공간 영역의 유사도가 보존되므로, 본 논문에서는 블록기반 압축센싱 기

술을 사용하여 획득한 자연영상의 측정 신호에 대한 새로운 부호화 기술을 제안한다. 측정신호 간 유사성을 제거

하기 위해 이산 웨이블릿 변환(DWT)을 적용한 후, 각 DWT 계수에 적절한 양자화를 수행한다. 이를 통해, 측정

신호 내의 중복성을 제거하고, 측정 신호의 비트 율 또한 절약할 수 있었다. 실험 결과, 기존의 블록기반 평활 

Projected Landweber 알고리즘에 스칼라 양자화를 적용한 방법, DPCM 방법을 적용한 방법, 그리고 

Multihypothesis 기반 블록기반 평활알고리즘에 DPCM을 적용한 방법과 비교할 때, 제안방법의 PSNR이 각각 최

대 4dB, 0.9dB, 그리고 2.5dB 더 높은 성능을 보이는 것을 확인 할 수 있었다.
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ABSTRACT

Compressive sensing (CS) has drawn much interest as a new sampling technique that enables signals to be 

sampled at a much lower than the Nyquist rate. By noting that the block-based compressive sensing can still 

keep spatial correlation in measurement domain, in this paper, we propose a novel encoding technique for 

measurement data obtained in the block-based CS of natural image. We apply discrete wavelet transform (DWT) 

to decorrelate CS measurements and then assign a proper quantization scheme to those DWT coefficients. Thus, 

redundancy of CS measurements and bitrate of system are reduced remarkably. Experimental results show 

improvements in rate-distortion performance by the proposed method against two existing methods of scalar 

quantization (SQ) and differential pulse-code modulation (DPCM). In the best case, the proposed method gains 

up to 4 dB, 0.9 dB, and 2.5 dB compared with the Block-based CS-Smoothed Projected Landweber plus SQ, 

Block-based CS-Smoothed Projected Landweber plus DPCM, and Multihypothesis Block-based CS-Smoothed 

Projected Landweber plus DPCM, respectively.
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Ⅰ. Introduction

In conventional digital processing, if signal 

sampling follows the Nyquist/Shannon theorem with 

a sampling rate being at least twice of signal 

bandwidth, alias-free acquisition of band-limited 

signal is guaranteed. For many applications such as 

high resolution image/video data transmission, a 

huge amount of samples and their encoding might 

be impractical on some devices lacking in either 

computational resource or battery power or both of 

them, such as mobile phones. Recently, a new signal 

sampling technique, namely, Compressive Sensing 

(CS) sheds a light to overcome this problem by 

allowing a sparse signal to be sampled at a rate 

much lower than the Nyquist/Shannon one while 

still achieving exact reconstruction. In this sense, CS 

hints a promising way for those deprived 

applications. 

Note that, for a practical CS of natural images, its 

measurement data has to be encoded with 

quantization and entropy coding to generate bit 

stream for efficient storage/transmission. The 

simplest method is to apply scalar quantization (SQ) 

directly to the measurement data where the CS 

measurement is mapped to several discrete values. 

The lower and upper bounds of the asymptotic 

rate-distortion performance of SQ for quantizing CS 

measurements was analysed by W. Dai et al. [1]. 

Following, J. N. Laska et al. [2] studied quantization 

of CS measurements under a constraint of saturation 

which is caused by physical limitation. It only allows 

a finite range of voltages to be accurately converted 

to bits and only a finite number of bits are available 

to represent each value. This quantization is known 

as finite-range quantization. The challenge in dealing 

with the errors imposed by finite-range quantization 

is the lack of priori bound on the CS measurements, 

saturation errors are potentially unbounded.

In practical CS for image, block-based CS (BCS) 

scheme shows some advantages over frame-based 

scheme in that measurement operator can be easily 

stored and implemented. By noting that block-wise 

spatial correlation of image is still preserved in 

measurement domain, S. Mun et al. [3] proposed an 

encoding method that combines SQ with differential 

pulse-code modulation (DPCM). In its encoding, 

measurement of a previous block, which is 

considered as a prediction for the current block, is 

subtracted from the measurement of a current block. 

The resulting residual measurements are then scalar 

quantized and sent to decoder. In this way, the 

system attains surprisingly competitive rate-distortion 

performance compared with an existing simple 

method of quantizing CS measurement by SQ alone.

However, in image/video processing, the 

transform coding has been known to give better 

performance than DPCM since it is less sensitive to 

data statistics than DPCM [4], especially for low bit 

rates such as 1 or 2 bits/pixel (the prediction 

mismatch of DPCM depends much on the data 

statistics themselves; the high variation of data 

statistics leads to high predictor mismatch and 

causes a quantizer mismatch). Transform coding is 

widely applied to coding image and video 

application such as JPEG
[5], JPEG 2000[6], 

H.264/AVC
[7,8], and H.265/HEVC[9-11] for which 

discrete cosine transform (DCT) and discrete 

wavelet transform (DWT) are most popularly used 

owing to their good efficiency in decorrelating 

signals. However, compared with DCT, DWT not 

only achieves high decorrelation and excellent 

energy compaction but also provides high spatial 

resolution. Motivated by these, in this paper, we 

introduce a method that uses DWT to decorrelate 

CS measurements to improve the compression 

performance of existing CS measurement coding 

methods using SQ alone or DPCM combined with 

SQ in [3].

At encoder, measurements of all blocks by the 

same projection of BCS are reshaped into 2D-form 

and then DWT is applied to remove redundancy 

among those CS measurements. It is worth 

emphasizing that each band of DWT has a different 

role in image representation; therefore, the bands of 

CS transform coefficients are assigned with different 

quantization schemes. By this way, number of bits 

for representing measurement data is saved 

remarkably. At decoder, a corresponding inverse 

process is performed to reconstruct CS 
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measurements. Experimental results manifest 

superior improvements of the proposed method over 

other existing methods in terms of objective quality.

The remainder of this paper is organized as 

follows: Section II introduces background of CS, 

Section III presents the proposed method for coding 

BCS measurements. Experimental results and 

analyses are shown in Section IV. Finally, in 

Section V, we conclude our works.

Ⅱ. Background

A length-  signal   that has at most  non-zero 

coefficients for some ≪ is called -sparse 

signal, i.e., ∥∥ ≤  where ∥∥ is -norm. 

Compressive sensing [12-13] can recover the 

-sparse signal   from its a few measurements 

∈ even if the number of measurements (i.e., 

samples)  is smaller than the one specified by the 

Nyquist/Shannon rate. The measurement vector   is 

a linear projection of the signal   by a measurement 

matrix  as:

  (1)

It is well known that, CS theorem attempts to 

find the sparest solution that satisfies eq. (1). From 

a practical view point, most natural signals are not 

exactly sparse, but can be sparsely represented in a 

proper transform domain. For example, image/video 

signal is very often sparse in DCT or DWT, so the 

signal   can be represented as   , where   is 

the transform coefficient of  , and  is called a 

sparsifying transform. The sparse signal   can be 

recovered from the  measurements, 

    where ≪, by the 
-minimization:

 ∥∥     (2)

However, the -minimization is an NP-hard 

problem[14]; thus, as an alternative, CS typically 

solves (2) by -minimization which leads to a 

convex optimization problem as: 

 ∥∥     (3)

In order for accurate and stable recovery, the 

measurement matrix needs to satisfy some 

conditions such as restricted isometry property of 

order-[15], i.e., there should exit a constant 

∈   holding for all -sparse signal   such 

that:

∥∥≤∥∥≤ ∥∥ (4)

  

Then, CS can successfully recover a signal under 

a condition of enough measurements, typically, 



 [16]. Otherwise, the number of 

measurement can be adaptive to achieve high 

performance as in [17].

Ⅲ. Proposed Measurement Coding for 
Block-based Compressive Sensing of 

Image

In BCS, an input image is split into ×  

non-overlapping blocks denoted by ∈  where 

 is a block index.  is a column vector with   

elements each of which is a pixel value inside the 

-th ×  block. Each block is compressively 

sampled into measurement domain as   
 

where ∈ and   is a ×
 

measurement matrix.  is a column vector with 

  elements each of which is a CS measurement 

for the -th ×  block. It is called a measurement 

vector.   is a number of measurements 

representing , and the ratio of  
 is 

called subrate (or, measurement rate). It represents 

how much sub-sampling is done since  
 . It 

is worth noting that block-wise spatial correlation 

among image blocks still exists in measurement 

domain. S. Mun et al. has empirically observed that 

such high correlation exits among measurements of 

BCS with the corresponding average correlation 

value even reaching above 0.95 in Lena image [3]. 

That high correlation is an evidence for lots of 
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그림 1. BCS measurements of image. (a). 2D-reshaped representation (size ×) of BCS measurements of × Lena 
image with block size ×; and (b). its level-1 DWT representation  
Fig. 1. BCS 영상 측정신호. (a) 512x512해상도를 갖는 Lena영상을 8x8크기로 획득한 BCS 측정신호를 64x64해상도의 2D 형태
로 재구성 (b) 2D형태 Lena 측정 신호에 대한 level-1 DWT 표현
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그림 2. BCS 측정신호의 2D 표현을 위한 DWT 과정
Fig. 2. DWT process for 2D-reshaped representation of 
BCS measurement

redundancy existing in measurement data. Therefore, 

one can expect to attain remarkably better 

rate-distortion performance by reducing the 

redundancies. 

This paper aims to propose an improved such 

measurement encoding method by applying 

transform for removing the redundancy among CS 

measurements before quantization. Although the 

Karhunen-Loeve transform [18] is theoretically  

optimum decorrelating transform, it is impractical 

due to its data-dependence nature. By noting that 

DWT-based scheme usually shows better 

performance than DCT-based scheme [19-20] and it 

can provide a framework for decomposing signals 

into a hierarchy of frequency bands corresponding to 

higher spatial resolution than DCT, we design a 

method that utilizes DWT to decorrelate CS 

measurements.

Fig. 1 presents a process of forming 2D-reshaped 

representation created from BCS measurements 

associated with the same projection (i.e., the 

measurement matrix ) and its DWT 

representation. The DWT coefficients of 

2D-reshaped representation are calculated by passing 

them through a series of filters [21] which can be 

represented as following equations (5) - (8).

  ∗↓ ∗↓ (5)

  ∗↓ ∗↓ (6)

  ∗↓ ∗↓ (7)

  ∗↓ ∗↓ (8)

where  is 2D-reshaped representation of BCS 

measurement;   and  are impulse responses of 

low-pass filter and high-pass filter, respectively; 

 , , ∗, and ↓ are row processing operator, 

column processing operator, convolution operator, 

and subsampling operator by 2, respectively; , 

,  and  are DWT coefficients of LL 

(Low-Low) band, LH (Low-High) band, HL 

(High-Low) band, and HH (High-High) band, 

respectively (see Fig. 2 for more clarity). Fig. 1 

clearly shows that the structure of original image is 

also kept in a reshaped 2D-form. Therefore, we can 

use a proper transform for measurements  to 

remove redundancy. Obviously, most energy of 

reshaped 2D-form concentrates in LL band of DWT 
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그림 3. 영상의 블록기반 압축센싱을 위한 제안하는 측정신호 부/복호화 구조
Fig. 3. Proposed measurement encoding and decoding for BCS of image

domain.

In this proposed encoding method, in order to 

exploit correlation among blocks in measurement 

domain, measurements of all blocks coming from 

the same projection are firstly reshaped into a 

2D-form , and then DWT is applied to 

decorrelate CS measurements. DWT compacts 

energy of data into a few low frequency coefficients 

while also represents high frequency coefficients 

with smaller value. Four bands of wavelet 

representation - LL, LH, HL, and HH - contain 

different frequency components so that some bands 

may need to be handled with different quantization 

schemes. More clearly, by natural characteristic, 

since DWT provides high spatial resolution and 

most energy of data is concentrated in LL band, thus 

leading the LL band to be the most important, it 

should be processed differently from other bands. As 

shown in Fig. 2, the LL band is created by passing 

2D-reshaped representation of CS measurement 

through low pass filtering   along the rows and 

then the same low pass filter   along the 

corresponding columns. As a result, the LL band 

provides the coarse-scale approximated version of 

original 2D-reshaped representation at a half 

resolution. Therefore, LL band still contains most of 

spatial information of 2D-reshaped representation 

(i.e., coefficient of LL band still keeps high 

correlation, see Fig. 1(b) for more clarity), so that 

DPCM plus SQ is employed to quantize the LL 

band to give better redundant elimination. On the 

other hand, since LH, HL and HH band contain high 

frequency coefficients, the correlation among 

coefficients is small; for simplicity, they are 

quantized by SQ. Additionally, due to the 

importance of LL band coefficients, we also assign 

more bits to represent codewords in LL band than in 

other high frequency bands. At decoder, a matching 

dequantized process is performed to recover the CS 

measurements. A diagram of the proposed encoding 

and decoding scheme for the block-based 

measurement data is shown in Fig. 3.

Ⅳ. Experimental results

In this section, performance of the proposed 

method is evaluated using four × natural 

images in Fig. 4, namely, Lena, Goldhill, Boat, and 

Cameraman. At encoder, an input image is split into 

non-overlapping blocks and then each block is 
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(a) Lena

    

(b) Goldhill

    

(c) Boat

    

(d) Cameraman

그림 4. 원본 테스트 영상
Fig. 4. Original test images
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(d) Cameraman

Fig. 5. 제안방법 및 기존 방법간의 율-왜곡 성능비교 (블록크기 ×)
그림 5. Rate-distortion performance comparison of the proposed method against exiting methods (block size ×)

sampled using an i.i.d. random Gaussian 

measurement matrix. In our experiments, we employ 

two block sizes, × (i.e.,  ) and × 

(i.e.,  ). Performance of the proposed 

encoding method is compared with BCS-SPL [22] 

and MH-BCS-SPL [23] recovery schemes coupled 

with two quantization methods, namely, SQ alone 

and DPCM plus SQ [3]. The spasifying transform 

used in our paper for CS recovery at decoder is 

DWT. For fair comparison with previous coding 

schemes in [3], we also ignore the entropy coding 

part as the existing methods. Note that, for SQ alone 
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그림 6. 제안방법 및 기존 방법간의 율-왜곡 성능비교 (블록크기 ×)
Fig. 6. Rate-distortion performance comparison of the proposed method against exiting methods (block size ×)

and DPCM plus SQ, the obtained bitrate depends 

both on the quantization step size of SQ and the 

subrate of BCS measurement process. Especially, for 

a particular bitrate, each image and recovery 

algorithm have an optimal quantization step that 

generates the highest PSNR
[24]. Consequently, for the 

experiments in this paper, the optimal combination 

of quantizer step size and subrate are chosen via 

exhaustive search over all possible pairs of step 

sizes and subrates as in [3]. In details, the 

rate-distortion performance of the proposed method 

is presented in Fig. 5 and Fig. 6 for a bitrate ranging 

from 0.1 bpp to 1 bpp. Note that, the results of 

BCS-SPL and MH-BCS-SPL coupled with SQ alone 

and DPCM plus SQ for block size × slightly 

differ from the results in [3] since different 

measurement matrix is used. 

Fig. 5 shows the rate-distortion of the proposed 

method with block size of ×. Obviously, among 

those three methods, SQ which does a uniform 

quantization, deals with all CS measurements 

equally; i.e., the redundancy among CS 

measurements is not exploited. Therefore, 

performance of SQ method is the worst among the 

three methods. Thanks to high energy compaction 

property of DWT, the proposed method shows 

superior improvements compared with the SQ 

method. For example, compared with BCS-SPL plus 

SQ, PSNR gain of the proposed method is up to 3 

dB, 1.9 dB, 2.3 dB and 4 dB, respectively for 

images, Lena, Goldhill, Boat, and Cameraman.

Moreover, Fig. 5 also shows that performance of 
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the proposed method is better than the method that 

applies DPCM plus SQ to measurement data. For 

those images with much texture and/or many strong 

edges such as Lena and Goldhill which contain 

much high frequency information in DWT domain, 

the proposed method only attains a slight gain. For 

example with Lena image, the improvement is up to 

0.7 dB and 1.2 dB compared with BCS-SPL coupled 

with DPCM plus SQ, and MH-BCS-SPL coupled 

with DPCM plus SQ, respectively. Specially, for 

some smooth images like Boat or Cameraman 

containing plenty of repeated patterns, the 

performance of the proposed method is very good. 

For example of Cameraman image, the proposed 

method gains up to 0.9 dB and 2.5 dB compared 

with BCS-SPL coupled with DPCM plus SQ, and 

MH-BCS-SPL coupled with DPCM plus SQ, 

respectively.

Additionally, Fig. 6 shows rate-distortion of the 

proposed method with block size of ×. It is 

clear that performance of the proposed method is 

also better than those methods of SQ alone and 

DPCM plus SQ; however, the performance with 

block size of × is lower than that with block 

size of ×, this is because in natural image, 

correlation among blocks of size × is higher 

than that among blocks of size×. Note that as 

block size becomes larger, blocks are more likely to 

contain different objects, which leads to lower 

statistical consistency among blocks. By our 

proposed method, most of redundancy among 

measurements is removed; so with block size of 

×, more redundancy is eliminated successfully, 

leading to higher performance. 

Ⅴ. Conclusion

In this paper, a measurement coding framework 

for BCS of images is proposed for improving 

rate-distortion of CS system based on transform 

coding. The high redundancy existing among BCS 

measurement is eliminated by applying DWT to 

2D-reshaped representation of BCS measurement 

followed by proper quantizer scheme for  each band. 

It helps to considerably save total bits for 

representing CS measurements. Our experimental 

results verify that the proposed method produces 

better rate-distortion performance compared with SQ 

alone and DPCM plus SQ.
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