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영확률 성능기준에 근거한 결정궤환 알고리듬의 

효율적인 계산  
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Based on Zero-Error Probability Criterion
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요   약

영확률을 성능기준으로 하는 적응 알고리듬은 충격성 잡음에 강인함을 나타내며 그 결정 궤환 알고리듬은 심각

한 다경로 채널 왜곡을 효과적으로 보상하는 것으로 알려져 있다. 그러나 이러한 결정 궤환 영확률 알고리듬은 각 

필터 구역에 대해 매 샘플시간마다 여러 합산 동작을 계산해야하는데 이것이 실제 구현에 장애가 되고 있다. 이 

논문에서는 반복적 기울기 추정 방식을 가진 결정 궤환 영확률 알고리듬을 제안하며 이 알고리듬은 기존 계산량 

O(N)을 샘플 사이즈 N에 무관한 상수량으로 줄일 수 있음을 보인다. 또한 초기상태와 안정상태의 가중치 갱신이 

연속적인 과정으로 이루어져 결정 궤환에서 어떤 기울기 추정 오류 전파도 일으키지 않음을 보인다.
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ABSTRACT

Adaptive algorithms based on the criterion of zero-error probability (ZEP) have robustness to impulsive noise 

and their decision feedback (DF) versions are known to compensate effectively for severe multipath channel 

distortions. However the ZEP-DF algorithm computes several summation operations at each iteration time for 

each filter section and this plays an obstacle role in practical implementation. In this paper, the ZEP-DF with 

recursive gradient estimation (RGE) method is proposed and shown to reduce the computational burden of O(N) 

to a constant which is independent of the sample size N. Also the weight update of the initial state and the 

steady state is a continuous process without bringing about any propagation of gradient estimation error in DF 

structure. 
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Ⅰ. Introduction

Wireless communication systems may suffer 

performance degradation by multipath propagation 

and impulsive noise in many communication 

systems such as satellite-mobile and underwater 

communications
[1,2]. 

Conventional adaptive equalizer algorithms to 

cope with multipath problems are generally based on 

mean squared error (MSE) criterion. While the 

MSE-based algorithms are highly sensitive to 

impulsive noise, information theoretic learning 

methods utilizing kernel density estimation for 
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Fig. 1. Decision feedback equalizer structure. 

nonparametric probability density function are robust 

to impulsive noise[3]. Maximization of zero-error 

probability (ZEP) has shown superior performance 

compared to MSE-based methods in supervised 

channel equalization applications
[4]. 

In the work[5], the performance of ZEP with 

decision feedback (DF) algorithm under impulsive 

noise environments has been introduced. Compared 

to the non-DF ZEP algorithm, the algorithm with 

DF has shown significantly improved convergence 

in the situation of severely distorted channel and 

impulsive noise. However, one of the problems to 

be solved in that algorithm is the computational 

burden taking place in estimating the gradient for 

weight update equation at each iteration time. This 

problem must be coped with for practical 

implementation so that a new method of computing 

each section gradient efficiently is proposed in this 

paper. For that purpose, the efficient calculation 

method introduced in the linear algorithm
[6] is 

modified and developed for the DF structure and it 

is investigated whether the method for DF might 

cause gradient-error propagation. 

Ⅱ. Maximization of ZEP criterion for DF 
algorithms 

The criterion of zero-error probability fE(0) 

constructed by kernel-based Parzen window density 

estimation is defined as in (1)
[4].  
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where Gσ(․) is Gaussian kernel with kernel size σ, 

andN is the sample size for the probability 

estimation.  While large sample sizes ensure reliable 

density estimates, a computational cost scales 

directly with the sample size. Here lies the main 

practical difficulty with employing kernel-based 

Parzen window density estimators
[7].

When error samples of adaptive systems are 

needed to be concentrated at zero for some 

applications, the criterion ZEP is maximized with 

respect to the system weights as 
)0(max EW

f
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feedback filter section for producing corresponding 
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proposed in [5]. 
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It is observed that the gradient vector 
F
k∇  and 

B
k∇  at each iteration are estimated through the 

computation of O(N) (due to the summation 

operations) for each filter section. This can be a 

computational burden for practical implementation. 

For reduced computational complexity, a recursive 

gradient estimation (RGE) approach is proposed in 

the following section.  

Ⅲ. RGE for MZEP-DF algorithms

Each gradient 
F
k∇  and 

B
k∇  can be calculated in 

the initial and steady state, separately. In the initial 

state 1 ≤ k ≤N (e0 = 0, X0 = 0, and 0ˆ
1 =−D ), the 

number of available error samples are only k so that 

each gradient can be estimated as 
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We can separate the data related with the current 

time k from each summation as
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Similarly, the backward gradient in the initial 

state becomes  
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In the steady state for k ≥N+1, the number of 

available error samples are the same as the sample 

size N. The gradient for the feedforward section at 

time k can be divided into the terms related with the 

current sample time k and the terms related with the 

previous sample times as
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Utilizing the definition 
F
k∇ in(4) leads to
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Here, the MZEP-DF algorithm, (2) and (3) can 

become a computationally efficient one by use of 

RGE methods (11) and (12) for the steady state, and 

(8) and (9) for the initial state. This algorithm will 

be referred to as MZEP-DF with RGE 
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Fig. 2. Number of multiplications with respect to sample 
size N. Fig. 3. The impulsive noise.

(MZEP-DF-RGE) in this paper.      

Ⅳ. Simulation Results 

In this section, it is investigated how much the 

proposed MZEP-DF-RGE of (11) and (12) reduces 

computational complexity in multiplication when we 

compare it with the original MZEP-DF of (4) and 

(5). For convenience, the Gaussian kernel 

Gσ(ei)commonly included in both methods is treated 

as a function value for ei and N2
1

σ  is treated as a 

constant. The equations (4) and (5) demand 4N+2 

multiplications at each iteration time. However, the 

proposed (11) and (12) only require 10 

multiplications regardless of the sample size N. As 

mentioned in section 2, the sample size required to 

be large for reliable density estimates. The property 

of being independent of the sample size N indicates 

that the proposed method reduces the computational 

cost considerably. Clearer comparisons are shown in 

Fig. 2 which reveals that the proposed 

MZEP-DF-RGE is more appropriate to practical 

implementations. 

As another issue, gradient-error propagation 

problems are investigated. The feedback filter 

section cancels the ISI that remains after the feed 

forward section under the assumption of past 

decisions being correct.  This indicates that incorrect 

decisions can induce error propagation. Similarly, it 

is observed that the recursive method might cause 

gradient-error propagation if the gradient value of 

theinitial state is discontinuously transferred to the 

steady state. This scenario shows that the proposed 

RGE method for DF can cause another serious 

problem to DF equalizers which are fragile to error 

propagation. So, it is required to investigate whether 

the estimation of each gradient has a continuous 

mode change from the initial state into the steady 

state. This can be done by seeing if the two modes 

yield the same gradient values at k = N. The initial 

state gradients (6) and (7) at k = N are
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And the steady state gradients (10) and (12) at k

= N are
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Inserting e0 = 0 and X0 = 0 into the summation in 

(15) and rearranging it leads to
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Also,
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Fig. 4. MSE learning curves under impulsive noise 
environment
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Since e0 = 0, X0 = 0, and 0ˆ
1 =−D ,

B
N∇  of (17) 

becomes 
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Observing that (13) and (14) are exactly the same 

as (16) and (18), respectively, we can judge that the 

gradient values of the initial state are continuously 

transferred to the steady state  without bringing 

about any gradient error propagation. 

To verify that the proposed MZEP-DF-RGE 

algorithm yield the same immunity against impulsive 

noise as MZEP-DF, MSE learning curves are 

compared in Fig. 2 under the same channel 

environment and equalizer factors used in [5].  That 

is, the transfer function the channel model is  

21
1 304.0903.0304.0)( −− ++= zzzH (19)   

The channel output is added with impulsive noise 

as in Fig. 3. The variance 50, occurrence rate 0.03. 

The background noise AWGN of variance 0.001 is 

added so that the SNR for AWGN and binary 

symbol points is 30 dB. The step size μ for the 

proposed algorithm is varied from 0.0008 to 0.006 

to investigate the behavior of residual MSE. The 

numbers of feed-forward and feedback weights are 7 

and 4, respectively. 

As shown in Fig. 4, the proposed MZEP-DF-RGE 

rapidly converges under impulsive noise and 

multipath channel distortion while the LMS–DF 

stays at about -6 dB with the gap of 19 dB 

compared to MZEP-DF-RGE. The residual MSE of 

the proposed algorithm varies from -23dB to -24dB 

when its step size is increased from 0.0006 to 0.006. 

The convergence speed shows wide difference as 

predicted but the difference of the residual MSE of 

the proposed algorithm is just 1 dB. Similar 

phenomenon is observed in the residual MSE of 

LMS-DF showing -4.6 and -6.6 dB for its step size 

is 0.0002 and 0.002, respectively.

Ⅴ. Conclusions 

The MZEP-DF algorithm has been known to have 

robustness to impulsive noise and severe multipath 

channel distortions. However the weight update 

process of MZEP-DF algorithm computes some 

summation operations at each iteration for each filter 

section. This computational burden being an obstacle 

for practical implementation can be avoided by the 

proposed MZEP-DF-GRE method which reduces the 

computational burden of )(NO to a constant 

which is independent of the sample size N . 

Also the weight update of the initial state and the 

steady state is a continuous process without bringing 

about any propagation of gradient estimation error. 

These results lead us to conclude that the proposed 

MZEP-DF-GRE method is an appropriate candidate 

for practical implementations.     
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