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Efficient Calculation for Decision Feedback Algorithms
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ABSTRACT

Adaptive algorithms based on the criterion of zero-error probability (ZEP) have robustness to impulsive noise
and their decision feedback (DF) versions are known to compensate effectively for severe multipath channel
distortions. However the ZEP-DF algorithm computes several summation operations at each iteration time for
each filter section and this plays an obstacle role in practical implementation. In this paper, the ZEP-DF with
recursive gradient estimation (RGE) method is proposed and shown to reduce the computational burden of O(N)
to a constant which is independent of the sample size N. Also the weight update of the initial state and the
steady state is a continuous process without bringing about any propagation of gradient estimation error in DF

structure.

[. Introduction communications'?.

Conventional adaptive equalizer algorithms to

Wireless communication systems may suffer cope with multipath problems are generally based on

performance degradation by multipath propagation mean squared error (MSE) criterion. While the

and impulsive mnoise in many communication MSE-based algorithms are highly sensitive to

systems such as satellite-mobile and underwater impulsive noise, information theoretic learning

methods utilizing kernel density estimation for
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nonparametric probability density function are robust
to impulsive noise”. Maximization of zero-error
probability (ZEP) has shown superior performance
compared to MSE-based methods in supervised
channel equalization applicationsm,

In the work”, the performance of ZEP with
decision feedback (DF) algorithm under impulsive
noise environments has been introduced. Compared
to the non-DF ZEP algorithm, the algorithm with
DF has shown significantly improved convergence
in the situation of severely distorted channel and
impulsive noise. However, one of the problems to
be solved in that algorithm is the computational
burden taking place in estimating the gradient for
weight update equation at each iteration time. This
problem must be coped with for practical
implementation so that a new method of computing
each section gradient efficiently is proposed in this
paper. For that purpose, the efficient calculation
method introduced in the linear algorithm' is
modified and developed for the DF structure and it
is investigated whether the method for DF might

cause gradient-error propagation.

II. Maximization of ZEP criterion for DF
algorithms

The criterion of zero-error probability fz(0)
constructed by kernel-based Parzen window density
estimation is defined as in (1)[4]‘

k

ﬁ@=$}£&%) M

where G,( +) is Gaussian kernel with kernel size o,
andN is the sample size for the probability
estimation. While large sample sizes ensure reliable
density estimates, a computational cost scales
directly with the sample size. Here lies the main
practical difficulty with employing kernel-based
Parzen window density estimators'”.

When error samples of adaptive systems are
needed to be concentrated at zero for some

applications, the criterion ZEP is maximized with
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max £, (0)

respect to the system weights as ~w

When the adaptive system employs DF, it
consists of a feed-forward filter section and a

feedback filter section for producing corresponding

decisions d; from input Xx as depicted in Fig 1.

With the feed-forward weight vector
F FoF | F Fooqr
Wi =[Wios Weas Wi aoees Wi pi ] , the feedback
B B B B B 1T
weight vector We =[WeosWeisWeassWep ] and
the previously detected symbol vector

A A N A r
D =[d sy 55nsdig 5] , the output Yt to the
T
input vector X¢ =[Xe> X X_pal’ is expressed
T F N B
as Vi = Xi W, +D Wo - Weights are updated

toward maximizing the zero-error probability J£(0)

7,0 _or
using the gradient oW’ k,

(MZEP)

7,0 _ s
oW? ¥ and the step size x4 as in (2) and (3)

that will be referred to as MZEP-DF algorithm as
proposed in [5].

Wi =W +u-V; @
W =W, + V) ©)

where the gradient vectors are

k
- e G,(e) X, @

k= 2
0°N iia
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Fig. 1. Decision feedback equalizer structure.
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It is observed that the gradient vector Vi and

Vf at each iteration are estimated through the
computation of O(N) (due to the summation
operations) for each filter section. This can be a
computational burden for practical implementation.
For reduced computational complexity, a recursive
gradient estimation (RGE) approach is proposed in

the following section.

. RGE for MZEP-DF algorithms

. \vai vE .
Each gradient Y+ and Y& can be calculated in

the initial and steady state, separately. In the initial

state 1 <k <N (ep=0, Xo=0, and ﬁ—l =0), the
number of available error samples are only k so that

each gradient can be estimated as

1 k
‘TkE e -G,(e) X, (6)
i=1

1 & -
= 2kzei'Ga(ei)'Di—1 @)
i=l

We can separate the data related with the current

time k from each summation as

Vi 7 [ekG(ek)X+Ze G, (e)X,]

= szek G, (e)- X,
(k-1)
2k(k 1)Z

1
Tkek ‘G,(e) X, +

®
G,(e) X,

(k=) gr

Similarly, the backward gradient in the initial

state becomes

1 k-1) &
Vf= 2 le, G, (e,) Dy, z(k(k—)l) i
i=l
-G, (e)-D,] ©)
1 k-1
:ﬁek G,(e)-D,, ( X )Vf

In the steady state for k > N+1, the number of
available error samples are the same as the sample
size N. The gradient for the feedforward section at
time k can be divided into the terms related with the
current sample time k and the terms related with the

previous sample times as

vE e -G (e)-X,
g N ZNH ( )
(10)
i=k— N
'Gn(ek) X, —e y Gole ya) X, vl
Utilizing the definition Vi in(4) leads to
Vi =vFf +L[e -G _(e) X, —¢
k k-1 Ty Yol R = Cnn (11
S CACARNRYED. vy
Similarly,
Vi= Ze -G (e)-D,,
Nl =k-N+1
_— : G, (e,)
U2N i:kiNi i-1 o \%k
. . (12)
‘D~ yy Gyl ) Dyl
1

= Vf—l + O'2N[ek -G, (e)

‘D =y Gl yi) Dy y]

Here, the MZEP-DF algorithm, (2) and (3) can
become a computationally efficient one by use of
RGE methods (11) and (12) for the steady state, and
(8) and (9) for the initial state. This algorithm will

be referred to as MZEP-DF with RGE
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(MZEP-DF-RGE) in this paper.

IV. Simulation Results

In this section, it is investigated how much the
proposed MZEP-DF-RGE of (11) and (12) reduces
computational complexity in multiplication when we
compare it with the original MZEP-DF of (4) and
(5). For convenience, the Gaussian kernel

Go(e;)commonly included in both methods is treated

1
as a function value for ¢; and 2y is treated as a

constant. The equations (4) and (5) demand 4N+2
multiplications at each iteration time. However, the
proposed (11) and (12) only require 10
multiplications regardless of the sample size N. As
mentioned in section 2, the sample size required to
be large for reliable density estimates. The property
of being independent of the sample size N indicates
that the proposed method reduces the computational
cost considerably. Clearer comparisons are shown in
Fig. 2 which reveals that the proposed
MZEP-DF-RGE is more appropriate to practical
implementations.

As another issue, gradient-error propagation
problems are investigated. The feedback filter
section cancels the ISI that remains after the feed
forward section under the assumption of past
decisions being correct. This indicates that incorrect
decisions can induce error propagation. Similarly, it
is observed that the recursive method might cause
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Fig. 2. Number of multiplications with respect to sample
size N.
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gradient-error propagation if the gradient value of
theinitial state is discontinuously transferred to the
steady state. This scenario shows that the proposed
RGE method for DF can cause another serious
problem to DF equalizers which are fragile to error
propagation. So, it is required to investigate whether
the estimation of each gradient has a continuous
mode change from the initial state into the steady
state. This can be done by seeing if the two modes
yield the same gradient values at k= N. The initial
state gradients (6) and (7) at k=N are

1 N
v = e -G (e) X, 13
N GZN;, (€)X, (13)
B 1 & N
VS = e-G (e) D, 14
N O-ZN,-Z:l:l o-( z) i—1 ( )

And the steady state gradients (10) and (12) at k
=N are

F 1

N

N-1
=——[) e -G, (e) X +e,
o’N Zo ) (15)

G, (ey) Xy —€ -G, () X|]

\%

Inserting eo = 0 and Xo =0 into the summation in

(15) and rearranging it leads to

1 N
v = E e -G (e) X, 16
N 2N — i o'( l) i ( )

Also,

volt

;

T T T T
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Numberof samples

Fig. 3. The impulsive noise.
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1 N-1 R
Vi=— [Ye G.(e)D,
" o’N Zo: 1 (17)

+ey 'Ga(eN)'f)N-l —€ ’Gn(q)'f)o]

Y B
Since ep=0, Xo=0, and D, =0_Vy of (17)

becomes

1 & .
Vi = -G, (e)-D,_ (18)
N O'ZN; 1

Observing that (13) and (14) are exactly the same
as (16) and (18), respectively, we can judge that the
gradient values of the initial state are continuously
transferred to the steady state without bringing
about any gradient error propagation.

To verify that the proposed MZEP-DF-RGE
algorithm yield the same immunity against impulsive
noise as MZEP-DF, MSE learning curves are
compared in Fig. 2 under the same channel
environment and equalizer factors used in [5]. That
is, the transfer function the channel model is

H\ (z)=0.304+0.903z"'+0.304z (19)

The channel output is added with impulsive noise
as in Fig. 3. The variance 50, occurrence rate 0.03.
The background noise AWGN of variance 0.001 is
added so that the SNR for AWGN and binary
symbol points is 30 dB. The step size #  for the
proposed algorithm is varied from 0.0008 to 0.006
to investigate the behavior of residual MSE. The

—f+—LMS-DF 0.0002
—O—LMS-DF 0.0004
—A—LMS-DF 0.002 1
—#—MZEP-DF-RGE 0.0006 |
——MZEP-DF-RGE 0.001
—+—MZEP-DF-RGE 0.006

10Log of MSE
&
L

T T T T 1
0 2000 4000 6000 8000 100¢
Iterations (number of samples)

Fig. 4. MSE learning curves under impulsive noise
environment

numbers of feed-forward and feedback weights are 7
and 4, respectively.

As shown in Fig. 4, the proposed MZEP-DF-RGE
rapidly converges under impulsive noise and
multipath channel distortion while the LMS -DF
stays at about -6 dB with the gap of 19 dB
compared to MZEP-DF-RGE. The residual MSE of
the proposed algorithm varies from -23dB to -24dB
when its step size is increased from 0.0006 to 0.006.
The convergence speed shows wide difference as
predicted but the difference of the residual MSE of
the proposed algorithm is just 1 dB. Similar
phenomenon is observed in the residual MSE of
LMS-DF showing -4.6 and -6.6 dB for its step size
is 0.0002 and 0.002, respectively.

V. Conclusions

The MZEP-DF algorithm has been known to have
robustness to impulsive noise and severe multipath
channel distortions. However the weight update
process of MZEP-DF algorithm computes some
summation operations at each iteration for each filter
section. This computational burden being an obstacle
for practical implementation can be avoided by the
proposed MZEP-DF-GRE method which reduces the

computational burden of O(N) to a constant

which is independent of the sample size =~ N

Also the weight update of the initial state and the
steady state is a continuous process without bringing
about any propagation of gradient estimation error.
These results lead us to conclude that the proposed
MZEP-DF-GRE method is an appropriate candidate

for practical implementations.
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