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요   약

인터넷 시스템의 보안은 백신을 최신으로 업데이트하고, 신종 악성코드를 탐지해 내는 능력에 달려있다. 하지만, 

급변하는 인터넷 환경과 더불어, 악성코드는 끊임없이 변종을 만들어내고 더욱 지능적으로 진화하고 있어 현재 운

용중인 시그니쳐 기반 탐지체계로 탐지되지 않는다. 따라서, 본 연구에서는 악성코드의 네트워크 행위 패턴을 추

출하여 DNA 서열 유사도를 비교하여 활용하는 유사 시퀀스 정렬 알고리즘을 적용하여 악성코드를 분류하는 기법

을 제안한다. 제안한 기법을 실제 네트워크에서 수집된 악성코드 샘플 766개에 적용하여 유사도를 비교한 결과 

40.4%의 정확도를 얻었다. 이는 코드나 다른 특성을 배제하고 악성코드의 네트워크 행위만으로 분류했다는 점을 

미루어 볼 때 앞으로 더 발전 가능성이 있을 것으로 기대된다. 또한 이를 통해 공격그룹을 예측하거나 추가적인 

공격을 예방할 수 있다.
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ABSTRACT

The security of Internet systems critically depends on the capability to keep anti-virus (AV) software 

up-to-date and maintain high detection accuracy against new malware. However, malware variants evolve so 

quickly they cannot be detected by conventional signature-based detection. In this paper, we proposed a malware 

classification method based on sequence patterns generated from the network flow of malware samples. We 

evaluated our method with 766 malware samples and obtained a classification accuracy of approximately 40.4%. 

In this study, malicious codes were classified only by network behavior of malicious codes, excluding codes and 

other characteristics. Therefore, this study is expected to be further developed in the future. Also, we can predict 

the attack groups and additional attacks can be prevented.
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Ⅰ. Introduction

One of the major security threats on the Internet 

is malware, i.e., malicious software. According to 

the November 2014 McAfee Labs Threats Report[1], 

the total number of variants of malware in McAfee 
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Labs exceeded 200 million. Furthermore, malware 

has turned into a profitable business for malware 

authors and their customers. Malware authors often 

sell malware toolkits to their inexperienced 

customers, who can quickly create new customized 

malicious code variants.

The security of Internet systems critically depends 

on the capability to keep anti-virus (AV) software 

up-to-date and maintain high detection accuracy 

against new malware. However, malware variants 

evolve so quickly they cannot be detected by 

conventional signature-based detection. Furthermore, 

in contrast to the growing number of malicious 

codes, the number of analysts is markedly limited. 

Therefore, malware classification techniques have 

been proposed as solutions to deal with these 

problems.

Classification systems based on malware behavior 

are generally divided into two approaches. One 

relies on features extracted from the behavior of a 

system level, and the other depends on features 

extracted from network traffic. The vast majority of 

malware needs network activity in order to 

accomplish its purpose (e.g., downloading other 

malware, connecting to a C&C server, sending 

spam, stealing personal information, port scanning, 

and other typical network tasks). Many malware 

classification approaches based on network behavior 

have thus been proposed. Nevertheless, they merely 

rely on either a request URL or a payload for 

signature matching. To classify the network activity 

of malware, the patterns of network behavior must 

be understood and the changes in behavior observed. 

Therefore, flow sequences should be analyzed to 

provide interactive information of flow parameters 

caused by malware and their correlation.

In this paper, we present a novel malware 

classification method based on clustering of flow 

features and sequence alignment algorithms for 

computing sequence similarity, which represents the 

network behavior of malware. In our method, 

malware network behavior is translated into 

alphabetical sequence patterns. By modifying two 

sequence alignment algorithms, the behavior is 

analyzed to find the most similar malware. We focus 

on analyzing sequence similarity among the 

sequence patterns of malware traffic flow that is 

generated by executing malware on a dynamic 

analyzing system.

Ⅱ. Malware Classification

Malware classification is one of the main 

components of malware detection mechanisms. As 

stated by Rieck et al.[2], malware classification 

systems are necessary and important for detecting 

cyber threats because they work together with 

malware identification processes to produce correct 

and effective malware antidotes. Host-based 

anti-virus systems detect and remove malicious 

threats from end systems. As a normal part of this 

process, these anti-virus programs provide a 

description of the malware they detect. The ability 

of these products to successfully characterize these 

threats has far-reaching effects: from facilitating 

sharing across organizations to detecting the 

emergence of new threats.

However, for this information to be effective, the 

descriptions provided by these systems must be 

meaningful. The result in Bailey et al.
[3] is striking 

in that there is a substantial difference in the number 

of unique labels created by each anti-virus system. 

While one might expect small differences, it is clear 

that anti-virus vendors disagree not only on what to 

label a piece of malware but also on how many 

unique labels exist for malware in general. 

Therefore, the technologies of malware classification 

must be developed effectively.

There are two major approaches to classifying 

malware: static and dynamic classification. The goal 

is to extract features and determine classifiers by 

which malware can be classified into its designated 

class. Malware classification generally consists of 

three steps. First, features that can distinguish each 

malware family are extracted. Second, a classifier is 

generated from the feature extracted. Finally, one 

identifies the family of malware using this classifier.

Cesare et al.
[4] proposed a classification method of 

malware variants based on using similarity matching 

over sets of control flow graphs. They calculate the 
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similarity between malware programs using novel 

distance metrics of malware signatures. Kinable et 

al.[5] also presented control flow graphs for malware 

classification. In their method, clustering is related 

to classification and is used on call graphs using the 

graph edit distance to construct similarity matrices 

between malware samples. Control flow is observed 

to be more invariant in polymorphic malware. 

Shankarapani et al.
[6] presented a methodology for 

composing signatures of malicious codes from PEs 

for identifying known and unknown malware. The 

key assumption of their idea is that to preserve its 

functionality a polymorphic malware should contain 

a sufficiently similar API calling sequence or 

assembly code. Iwamoto et al.
[7] proposed a malware 

classification that extracts features with API function 

calls. To visualize the grouping of samples with 

similar features they used hierarchical cluster 

analysis. Furthermore, Kim et al.
[8] presented a the 

performance of malware detection system applying 

linear SVM machine learning classifier to detect 

Android malware application. Also, Kim et al.
[9] 

proposed a android based malware detection 

mechanism using time-series analysis, which is one 

of statistical-based detection methods. 

A large number of malware samples were 

dynamically analyzed using a sandbox environment 

and their behaviors collected. The behavior of 

malware can be divided into system and network 

behavior.

Rieck et al.
[2] proposed a classification method of 

malware families based on their dynamic behavior. 

They adopted learning techniques to train the 

behavior features as classifiers and used them for 

classification decisions. Bayer et al.
[10] proposed a 

clustering approach to identify and classify malware 

samples that exhibit similar behavior. They executed 

malware programs to compute distance using the 

LSH technique, which calculates a probabilistic 

estimate of all near pairs. Cho et al.
[11] proposed a 

malware similarity method with malware executing. 

Based on sequence alignment, they computed the 

similarity of malware with API call sequences by 

removing repeated patterns.

Although most anti-virus software uses 

signature-matching techniques for detecting malware, 

Berger-Sabbatel et al.
[12] revealed that this approach 

can be easily evaded. They presented a method for 

observing the communication patterns of executing 

malware with DNS replies that represent botnet 

activity. Stakhanova et al.
[13] investigated malware 

behavior using network activity graphs. They 

modeled application level protocols as graph nodes 

and the commonalities between them as edges.

To focus on more specific information about 

network behavior, Perdisci et al.
[14] addressed a 

malware clustering system by extracting HTTP 

traffic traces and analyzing their similarity. Differing 

from previous works, Rafique et al.
[15] proposed a 

framework for extracting features from the protocol 

and traffic states in order to use the information 

obtained from all protocols. They assessed the 

applicability of various evolutionary and 

non-evolutionary algorithms for their malware 

family classification framework. Ahmed et al.
[16] 

addressed the classification of packet contents to 

detect executable code in traffic.

Nari et al.
[17] studied graph similarity analysis for 

classification of malware. Graphs are built with 

behavioral profiles that represent malware network 

activity such as DNS, SMTP, and HTTP. However, 

they did not consider the dependency on network 

flow or capture the network behavior of malware 

well enough to distinguish between different 

malware. In contrast to these approaches, we use 

only network traffic flow data and generate 

representations of malware network behavior for 

appropriate classification. 

It is important not only for research on 

classification, but also for detecting malicious 

behavior in the network. Jung et al.
[18] proposed a 

network defense mechanism based on isolated 

networks. In the paper, on their mechanism, every 

mobile device go through the integrity check system 

implemented in an isolated network, and can get the 

network access only if it has been validated 

successfully.

Sequence alignment is a method that compares 

two or more character sequences to obtain their 

similarities and dissimilarities. Malware 
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Fig. 1. Overview of malware classification

classification using sequence alignment has been 

extensively studied in malware analysis and 

detection research to classify normal, misuse, or 

unknown behavior. Several studies have proposed 

approaches to malware detection and classification. 

Inspired by the Smith-Waterman local alignment 

algorithm, Coull et al. presented a detection 

approach
[19]. The authors later enhanced it and 

presented a sequence alignment method using binary 

scoring and a signature-updating scheme to detect 

masquerade attacks
[20]. Another recent approach to 

detection is analyzing API call sequences and 

classifying them as benign or malicious
[21]. 

Two techniques for malware classification using 

sequence alignment have recently been proposed[7,22]. 

Both extract more detailed information from binaries 

including sequences of API calls and graphical 

representations of control flow. We extend the 

previous studies that focused on network activity of 

sequencing features. 

For similarity measurements between variants of 

malware, our research adopts the two sequence 

alignment algorithms: global alignment 

(Needleman-Wunsch) and local alignment 

(Smith-Waterman algorithms)
[23,24]. These two 

algorithms belong to dynamic programming, which 

is a method for solving complex problems gradually 

using recurrence. 

Ⅲ. Malware Classification Based on 
Network Pattern Using Sequence 

Alignment

In this chapter, we describe the proposed method 

for malware classification based on network 

behavior. Fig. 1. shows an outline of the proposed 

method, which is composed of training and 

classification phases.

3.1 Feature Extraction from Network Traffic 
of Malware

The goal of this work is to classify unknown 

malware in accordance with a sequence pattern of 

observable features. 

The features are extracted from the network 

traffic flow generated by a dynamic analyzer during 

the execution of the malware. To meticulously 

classify malware on the basis of its behavior, the 

malware analysis system is recommended to suitably 

reflect malware activities. Furthermore, for effective 

classification the features must be easy to extract 

and provide sufficient information to discriminate 

between different malware families. We have 

obtained both the header and payload of network 

packets. However, when using the payload a lot of 

storage space and analysis time are required.

On the other hand, the header information of the 

packets can be analyzed even if the communication 

is encrypted. Accordingly, we decided to use the 

flow sequence that is most suitable for observing the 

flow of packets.

We use a dynamic analysis method to capture the 

network behavior of malware in pcap files. First, the 

malware samples are executed by dynamic analysis 

systems, and the pcap file is obtained from the result 

of the dynamic analysis. The pcap file is analyzed 

using Argus, which extracts flow data from network 

traffic files. Table 1 provides examples of flow data 

extracted from real malware samples. Note that IP 

addresses are sanitized for privacy protection. As 

shown in Table 1, the flow extracted by Argus 

contains all types of protocols of traffic that are 

invoked by the malware. Among these protocols, 

TCP and UDP can be deeply associated with the 
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Feature Name Explanation

Dur Record total duration of flow

Seq Argus sequence number

Proto Transaction protocol (e.g., TCP, UDP, ARP)

SrcAddr Source IP address

DstAddr Destination IP address

Sport Source port number

Dport Destination port number

Dir Direction of transaction (e.g., →, ↔, ← )

State Transaction state (e.g., INT, CON, RST, REQ)

TotPkts Total transaction packet count

SrcPkts Src → Dst packet count

DstPkts Dst → Src packet count

SrcLoad Source bits per second

DstLoad Destination bits per second

Table 2. Features of Flow Data

Dur Seq  Proto SrcAddr DstAddr Sport Dport State Dir

2.999957 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT 

0.000000 2 IGMP 10.0.0.0 224.0.0.1 INT →

0.000332 3 ARP  192.168.1.1 192.168.1.2 CON 

0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT 

0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT 

0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT 

0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT 

0.756285 4 UDP    192.168.1.2 10.0.0.1 1037 53 CON ↔

0.003504 5 TCP    192.168.1.2 *.*.*.212 1038 80 CON →

0.000708 5 TCP    192.168.1.2 *.*.*.212 1038 80 RST →

0.000131 6 UDP 192.168.1.2 192.168.1.255 138 138 INT →

0.000012 6 UDP 192.168.1.2 192.168.1.255 138 138 REQ →

Table 1. Examples of Flow Data

behavior of malware, thus we adopt them as features 

for clustering.

A feature used for clustering is not a 

characteristic that only determines whether the 

packets are normal or malicious. Rather, it is used 

as a representative attribute of the flow element. 

Therefore, our method only requires appropriate 

extraction of the flow characteristics as a 

preprocessor. We defined 14 features as listed in 

Table 2.

First, the 5-tuple (SrcAddr, DstAddr, Sport, 

Dport, Proto) and direction (Dir) information, which 

can be automatically extracted from a packet header, 

are defined. Dir is a feature indicating the direction 

of information flow. If a flow does not include 

direction, it is defined as  . However, if a flow 

has direction, it is defined as →, ↔, or ←. The other 

features are the duration of the flow (Dur), the 

Argus sequence number from the particular session 

(Seq), the transaction state of the flow (State), the 

total, source, and destination transaction packet 

counts (TotPkts, SrcPkts, DstPkts), and the source 

and destination bits per second (SrcLoad, DstLoad).

3.2 Feature Clustering with K-means Algorithm
To cluster flow data, we use a K-means algorithm 

that is commonly used for unsupervised learning 

techniques. In the work of Erman et al.
[25], K-means 

is suitable for classifying traffic flows faster than 

other algorithms. It proceeds by selecting  initial 

cluster centers and then iteratively refining them.  

is a positive integer number specifying the number 

of clusters and has to be given in advance. The four 

steps of the K-means clustering algorithm are:

y Select an initial partition with  cluster centers; 

repeat steps 2 and 3 until clusters stabilize.

y Initialize the  cluster centroids. This can be done 

by arbitrarily dividing all objects into  clusters, 

computing their centroids, and verifying that all 

centroids are different from one another. 

Alternatively, the centroids can be initialized to  

arbitrarily chosen, different objects.

y Iterate over all objects and compute the distances 

to the centroids of all clusters. Assign each object 
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Cluster A B C D E F G H Total

Number of Flows 3,810 15,545 3,265 3,827 2,541 4,665 12,615 8,342 54,610

Percentage (%) 6.9 28.5 6.0 7.0 4.6 8.5 23.1 15.2 100

Table 3. Result of Flow Clustering ( )

Malware name Sequence data

Virus.Sality.gen.1 BGGBGGBBBGGBGGBGGBGGEEEEEEEEEBEEEEEEEEEEEEBE...

Virus.Sality.gen.2 CBGHBGGBBBGGBGGBGGBGGEEEEEEEEEEEEEEEEEEEEECEBE...

Backdoor.Simda.abxr DCCCDBAACAAADABAGGADDDDGGBDDCCBD

Backdoor.Simda.acak DGHGGGHGGGGGGGGGHGGGGGDGGGGGGGGGGGGGBGGHH...

Backdoor.Simda.acam DGHGGGHGHHGGGGGGHGGGGGGGGGGGGGGGGGGGGBGB...

Backdoor.Simda.acbg GHGGGHHHGGGGGGGHGGGGGCGGGGGGGGGGGGGGGBGB...

Table 4. Example of Sequence Data (  )

to the cluster with the nearest centroid.

y Recalculate the centroids of the modified clusters. 

A distance function is required in order to 

compute the distance (i.e., similarity) between two 

objects. The most commonly used distance function 

is the Euclidean distance, defined as follows:

  







 
 (1)

where    and 

    are two input vectors with 

  quantitative features. In the Euclidean distance 

function all features contribute equally to the 

function value. However, since different features are 

usually measured with different metrics or at 

different scales, they must be normalized before 

applying the distance function.

The formula for the square error  is shown by 

Equation (2):

 





∈
 


(2)

The square error is calculated as the square of the 

distance between each object   and the center of its 

cluster  . 

The clustering process applies the K-means 

clustering algorithm to datasets that contain the flow 

extracted as described in Subsection 1. The rationale 

of this approach is the assumption that the network 

behavior of malware forms different clusters in the 

feature space. The flow data may contain outliers 

that do not belong to a bigger cluster, yet this does 

not disturb the K-means clustering process as long 

as the number of outliers is small. 

An essential problem of the K-means clustering 

method is to define an appropriate number of 

clusters . As an initial value, we choose  to be 

in the range 6 to 20, assuming that the flow data of 

network behavior form many different clusters.

Table 3 shows an example of clustering for the 

condition   . In this example, the K-means 

algorithm is applied to a Botnet Watcher dataset, 

which consists of 91,441 flows generated by 766 

malware samples. Clusters are assigned a label from 

 to , as shown in Table 3.

3.3 Network Flow Sequence Pattern Generation
In this step, a sequence pattern for each variant of 

malware is generated using the clustering result. The 

sequence represents the extracted behavior of the 

malware. 

When two sequence patterns are similar, the same 

network activity may be the cause. We can identify 

malware families that have distinctive network 

behavior. Table 4. shows an example of sequence 

patterns generated by K-means clustering with 

 .  As shown in Table 4, similar sequences can 

possibly belong to the same malware family. 
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Through the matching of the activity and sequence 

of the malware, we determine the efficiency of the 

method.

Figure 2 presents the sequence patterns generated 

by K-means clustering. The objective of 

Trojan.Win32.AntiFW is to modify system settings 

that allow or augment potential malware behavior. It 

downloads files and makes an attempt at registry 

modification. In the next step, therefore, the 

sequence patterns are used to identify the malware 

families.

Trojan.Win32.A

ntiFW
=
BEEJGJGAAABEKKBEKKK

ABBBBEAAA

Fig. 2. Sequence patterns generated by K-means clustering

3.4 Classification using Sequence Alignment
In this step, we classify malware samples using 

sequence alignment. As an example, we have 

aligned the malware samples Virus.Sality.gen.1 and 

Trojan-Spy.Win32.Zbot.rfjs from Table 2 using two 

algorithms. The Needleman-Wunsch algorithm 

attempts to align every element in every sequence. 

On the other hand, the Smith-Waterman algorithm 

attempts to align only part of the two sequences. 

Therefore, the Smith-Waterman algorithm obtains a 

shorter total alignment than the Needleman-Wunsch 

algorithm.

In both methods, the similarity between two 

sequences is given as follows:

 
      
     

These two algorithms have drawbacks when 

applied to our method. When the difference between 

the lengths of sequences is large, they are difficult 

to define as similar even if their similarity is 100%. 

In the so-called Unified algorithm, we calculate the 

average of the similarities obtained from the two 

algorithms. The similarity from the Unified 

algorithm is given as follows (where  refers to 

Needleman-Wunsch,   refers to Smith-Waterman, 

and  refers to the Unified algorithm):

 

 

As an example, the results for the similarity 

between the variants of Sality and Zbot(Sality 1: 

Virus.Sality.gen.1, Sality 2: Virus.Sality.gen.2, Zbot: 

Trojan-Spy.Win32.Zbot.rfjs) are shown in Table 5. 

The results show that the Unified algorithm 

overcomes the shortcomings of the two individual 

algorithms.

  

Sality 1 & 2 91.2 91.0 91.1

Sality 1 & Zbot 94.7 5.6 50.2

Table 5. Example of Similarity Results (%)

Ⅳ. Experiments and Results

In this chapter we demonstrate the results of our 

experiments. We have experimented with various 

algorithms and data to classify malware using 

sequences of network behavior. In Section 1, we 

introduce the dataset used in the experiments of 

Sections 2. Section 2 presents an experiment that 

used malware collected from an actual Internet 

environment for one whole year. Finally, in Section 

3 we discuss the result of experiment.

4.1 Data of Malware Samples and Family
Labeling

We suppose that the malware samples were 

executed by a dynamic malware analyzer to collect 

network traffic capture files. Our method, therefore, 

adopts traffic data collected by Botnetwatcher
[7], 

which has been developed by NTT Secure Platform 

Laboratories and connected to the Internet. This 

dataset consists of the network traffic (pcap file) 

gathered during a 30-minute execution of each 

malware sample using a dynamic malware analysis 

system. Many dynamic analysis systems have 

difficulty analyzing the activity of malware 

accurately because they operate under the controlled 

environment of the Internet. However, the 

Botnetwatcher used in our method conducted a 
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Training Testing Total

# of Families 45 45

# of Samples 102 664 766 

Table 6. Numbers for the Training and Testing Datasets

real-time analysis that can be associated with an 

open environment.

The dataset also includes labels assigned by 

eleven kinds of anti-virus software that scanned each 

malware sample. Of these, we used the labels from 

Kaspersky to create labeled datasets because the 

classification criteria applied by Kaspersky are based 

on the behavior of malware. Kaspersky has 

classified malware using all features of malware, 

including network traffic flow. In contrast, our 

method only focuses on the network behavior of 

malware extracted from network flow. In the 

experiment, we compared the classification of 

Kaspersky and our classification method. If the 

results of the comparison are similar to the labeling 

of Kaspersky, it is possible to prove the 

effectiveness of our classification based on network 

behavior.

To acquire the family name of malware programs, 

we use the naming rule of Kaspersky Anti-virus1). 

All objects detected by Kaspersky are named as 

follows:

[Prefix:]Behaviour.Platform.Name[.Variant] 

The prefix identifies the sub-system that detected 

the object, but it is not an obligatory part of the 

name and may not be present. The behaviour 

specifies what the detected object does, and the 

platform is the environment in which the program 

code is executed. This can refer to both software 

and hardware. The name is the official name given 

to the detected object, which defines the family of 

detected objects. Finally, a variant is a modification 

of a detected object.

In the experiment, we regard 

[Prefix:]Behaviour.Platform.Name as the malware 

family name. For example, the family name of 

Backdoor.Win32.Agent.a is Backdoor.Win32.Agent, 

and Backdoor.Win32.Agent and Trojan.Win32.Agent 

are different family names. Because anti-virus 

venders use their own name rules, a situation in 

which different anti-virus venders assign the same 

1) http://www.securelist.com/en/threats/detect?chapter=136

family name to a malware program is rare.

4.2 Classification Experiment
In this section, we expand our dataset to include 

malware samples collected from October 2013 to 

October 2014 using Botnetwatcher mentioned in 

Section 1. 

4.2.1 Training and Testing Datasets

We identified 45 families of malware samples 

using Kaspersky2). We divided them into training 

and testing datasets. We extracted approximately 

10% of samples from each of the 45 families of 

malware samples in the training dataset (102 

samples), and obtained the remaining samples from 

the testing dataset (664 samples). To obtain a 

balanced training dataset, we limited the distribution 

of each family in the training dataset to 40% of the 

entire dataset. Table 6 shows the number of families 

and samples in the training and testing datasets. The 

total number of samples is 766.

The number of malware that have another 

malware sample in the same family group less than 

9 is 110. The number of malware that have another 

malware sample in the same family group more than 

10 and less than 100 is 453. The number of 

malware that have another malware sample in the 

same family group more than 100 is 203.

Table 7 shows part of the similarity between the 

variants of Backdoor.Win32.Tofsee, which is one of 

the families we identified. In Table 7, the maximum 

and minimum values of the similarity are 91.27% 

and 76.63%, respectively, and their table cells are 

highlighted. The average similarity percentage 

between the variants of Backdoor.Win32.Tofsee is 

84.62%. 

Table 8 shows part of the similarity between the 

variants of Backdoor.Win32.Simda, which is one of 

the families we identified. In Table 8, the maximum 

2) http://www.kaspersky.com/
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Tofsee 1 Tofsee 2 Tofsee 3 Tofsee 4 Tofsee 5

Backdoor.Win32.Tofsee 1 - - - - -

Backdoor.Win32.Tofsee 2 86.14 - - - -

Backdoor.Win32.Tofsee 3 87.51 91.27 - - -

Backdoor.Win32.Tofsee 4 81.57 76.63 78.27 - -

Backdoor.Win32.Tofsee 5 84.21 90.32 87.46 78.36 -

Table 7. Similarity between Variants of Backdoor.Win32.Tofsee (%,  )}

Simda 1 Simda 2 Simda 3 Simda 4 Simda 5

Backdoor.Win32.Simda 1 - - - - -

Backdoor.Win32.Simda 2 42.70 - - - -

Backdoor.Win32.Simda 3 38.36 94.23 - - -

Backdoor.Win32.Simda 4 39.75 92.00 90.38 - -

Backdoor.Win32.Simda 5 42.24 89.12 86.54 86.27 -

Table 8. Similarity between Variants of Backdoor.Win32.Simda (%,  )}

and minimum values of the similarity are 94.23% 

and 38.36%, respectively, and their table cells are 

highlighted. The average similarity percentage 

between the variants of Backdoor.Win32.Simda is 

59.22%.

4.2.2 Classification Accuracy

We measured the similarity between the training 

and testing datasets, that is, we calculated the 

similarity between one testing dataset and each 

individual training dataset. Then, we sorted them by 

ranking from No.1 to No.102 in decreasing order of 

similarity and made comparisons using the labels 

assigned by Kaspersky. By taking the comparison 

results into account, the testing data are classified 

into the family with the highest degree of similarity. 

We define the following indices for performance 

comparison: 

  
    

※ where T represents malware samples of the 

testing dataset.

The results are shown in Table 9. For the 

calculations, we used the three algorithms referred to 

in Chapter 3. We obtained similarities of 35.4% and 

40.1% by using the Smith-Waterman and 

Needleman-Wunsch algorithms, respectively. By 

using the Unified algorithm, which is the average 

value of the two algorithms, we obtained the highest 

result of 40.4 %.

Algorithm
Smith-Water

man
Needleman-

Wunsch
Unified 

Accuracy 35.4 40.1 40.4

Table 9. classification Accuracy 
(%,  ,   )}

4.3 Discussion
Figure 3 indicates the classification accuracy with 

the three algorithms. According to Figure 3, when 

we take care of classification within the Top 3, the 

classification accuracy exceeds 65%. This result 

shows the feasibility whthin the Top 3, the 

classification accuracy exceeds 65%. This result 

shows the feasibility of our method by improving 

our algorithm. 

On the other hand, Trojan.Yakes accounts for 

almost half the samples. Also, some families, such 

as Trojan.Win32.Yakes and Trojan-Ransom.Win32. 

Foreign, have much larger numbers of samples than 

the other families. This is because the dataset that 

we used is real malware collected from October 

2013 to October 2014, focusing on a specific 

distribution of malware samples. For future work, 
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Fig. 3. Classification Accuracy by Ranking (%,  , 
  )

we will complement the distribution of malware 

samples.

As shown in Table 9, the highest classification 

accuracy was obtained by the Unified algorithm, 

which is the average value of the Smith-Waterman 

and Needleman-Wunsch algorithms, and not by a 

method using only one algorithm. This shows that 

using the Unified algorithm can overcome the 

individual shortcomings of the two algorithms. We 

obtained a low accuracy, less than 40%, which we 

must devise measures to improve. 

Finally, the method needs to be improved to 

classify unknown malware. In this study, we 

performed experiments with only known families. 

For future work, we need to improve the 

classification method so it can be used with new 

malware.

Ⅴ. Conclusion

In this paper, we proposed a malware 

classification method based on sequence patterns 

generated from the network flow of malware 

samples. The goal was to classify malware by using 

only its network behavior. 

The method begins by obtaining flow data from 

traffic extracted by a dynamic analysis of malware. 

We extract features of the flow and cluster them 

using a K-means algorithm. On the basis of the 

clustering result, sequence patterns are generated. 

These patterns represent the network behavior of a 

malware family. Finally, we classify the malware 

behavior by using a sequence alignment algorithm. 

In particular, we have explored malware behavior by 

adapting the Needleman-Wunsch and 

Smith-Waterman algorithms. 

We evaluated our method with 766 malware 

samples and obtained a classification accuracy of 

approximately 40%. The average of the similarity 

between samples from the same malware family is 

40.4% in the experiment using an expanded dataset. 

It is useful to detect malware behavior without 

having to deeply analyze its binary.

Our future work will focus on studying the 

classification of unknown malware against known 

malware families using network behavior. We intend 

to continue developing and testing the classification 

system while expending our malware samples and 

refining our classification algorithm. We will also 

collect and analyze malicious code identified by the 

author and reflect it in the our system. It will be 

possible to predict and identify attack groups. 

Furthermore, we will erect malicious code data sets 

for comparing and verifying their classification 

accuracy so that they can be compared with other 

classification methods.
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