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ABSTRACT

The security of Internet systems critically depends on the capability to keep anti-virus (AV) software
up-to-date and maintain high detection accuracy against new malware. However, malware variants evolve so
quickly they cannot be detected by conventional signature-based detection. In this paper, we proposed a malware
classification method based on sequence patterns generated from the network flow of malware samples. We
evaluated our method with 766 malware samples and obtained a classification accuracy of approximately 40.4%.
In this study, malicious codes were classified only by network behavior of malicious codes, excluding codes and
other characteristics. Therefore, this study is expected to be further developed in the future. Also, we can predict
the attack groups and additional attacks can be prevented.

. Introduction is malware, i.c., malicious software. According to
the November 2014 McAfee Labs Threats Report!,
One of the major security threats on the Internet the total number of variants of malware in McAfee
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Labs exceeded 200 million. Furthermore, malware
has turned into a profitable business for malware
authors and their customers. Malware authors often
sell malware toolkits to their inexperienced
customers, who can quickly create new customized
malicious code variants.

The security of Internet systems critically depends
on the capability to keep anti-virus (AV) software
up-to-date and maintain high detection accuracy
against new malware. However, malware variants
evolve so quickly they cannot be detected by
conventional signature-based detection. Furthermore,
in contrast to the growing number of malicious
codes, the number of analysts is markedly limited.
Therefore, malware classification techniques have
been proposed as solutions to deal with these
problems.

Classification systems based on malware behavior
are generally divided into two approaches. One
relies on features extracted from the behavior of a
system level, and the other depends on features
extracted from network traffic. The vast majority of
malware needs network activity in order to
accomplish its purpose (e.g., downloading other
malware, connecting to a C&C server, sending
spam, stealing personal information, port scanning,
and other typical network tasks). Many malware
classification approaches based on network behavior
have thus been proposed. Nevertheless, they merely
rely on either a request URL or a payload for
signature matching. To classify the network activity
of malware, the patterns of network behavior must
be understood and the changes in behavior observed.
Therefore, flow sequences should be analyzed to
provide interactive information of flow parameters
caused by malware and their correlation.

In this paper, we present a novel malware
classification method based on clustering of flow
features and sequence alignment algorithms for
computing sequence similarity, which represents the
network behavior of malware. In our method,
malware network behavior is translated into
alphabetical sequence patterns. By modifying two
sequence alignment algorithms, the behavior is
analyzed to find the most similar malware. We focus
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on analyzing sequence similarity among the
sequence patterns of malware traffic flow that is
generated by executing malware on a dynamic

analyzing system.
II. Malware Classification

Malware classification is one of the main
components of malware detection mechanisms. As
stated by Rieck et al™ malware classification
systems are necessary and important for detecting
cyber threats because they work together with
malware identification processes to produce correct
and effective malware antidotes. Host-based
anti-virus systems detect and remove malicious
threats from end systems. As a normal part of this
process, these anti-virus programs provide a
description of the malware they detect. The ability
of these products to successfully characterize these
threats has far-reaching effects: from facilitating
sharing across organizations to detecting the
emergence of new threats.

However, for this information to be effective, the
descriptions provided by these systems must be
meaningful. The result in Bailey et al?! is striking
in that there is a substantial difference in the number
of unique labels created by each anti-virus system.
While one might expect small differences, it is clear
that anti-virus vendors disagree not only on what to
label a piece of malware but also on how many
unique labels exist for malware in general.
Therefore, the technologies of malware classification
must be developed effectively.

There are two major approaches to classifying
malware: static and dynamic classification. The goal
is to extract features and determine classifiers by
which malware can be classified into its designated
class. Malware classification generally consists of
three steps. First, features that can distinguish each
malware family are extracted. Second, a classifier is
generated from the feature extracted. Finally, one
identifies the family of malware using this classifier.

Cesare et al.” proposed a classification method of
malware variants based on using similarity matching

over sets of control flow graphs. They calculate the
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similarity between malware programs using novel
distance metrics of malware signatures. Kinable et
al.”) also presented control flow graphs for malware
classification. In their method, clustering is related
to classification and is used on call graphs using the
graph edit distance to construct similarity matrices
between malware samples. Control flow is observed
to be more invariant in polymorphic malware.
Shankarapani et al.”” presented a methodology for
composing signatures of malicious codes from PEs
for identifying known and unknown malware. The
key assumption of their idea is that to preserve its
functionality a polymorphic malware should contain
a sufficiently similar API calling sequence or

assembly code. Iwamoto et al.l”

proposed a malware
classification that extracts features with API function
calls. To visualize the grouping of samples with
similar features they wused hierarchical cluster
analysis. Furthermore, Kim et al® presented a the
performance of malware detection system applying
linear SVM machine learning classifier to detect
Android malware application. Also, Kim et al.”
proposed a android based malware detection
mechanism using time-series analysis, which is one
of statistical-based detection methods.

A large number of malware samples were
dynamically analyzed using a sandbox environment
and their behaviors collected. The behavior of
malware can be divided into system and network
behavior.

Rieck et al.” proposed a classification method of
malware families based on their dynamic behavior.
They adopted learning techniques to train the
behavior features as classifiers and used them for

classification decisions. Bayer et al."”

proposed a
clustering approach to identify and classify malware
samples that exhibit similar behavior. They executed
malware programs to compute distance using the
LSH technique, which calculates a probabilistic
estimate of all near pairs. Cho et al.l'™ proposed a
malware similarity method with malware executing.
Based on sequence alignment, they computed the
similarity of malware with API call sequences by
removing repeated patterns.

Although  most

anti-virus  software  uses

signature-matching techniques for detecting malware,

1" revealed that this approach

Berger-Sabbatel et a
can be easily evaded. They presented a method for
observing the communication patterns of executing
malware with DNS replies that represent botnet
activity. Stakhanova et al™” investigated malware
behavior using network activity graphs. They
modeled application level protocols as graph nodes
and the commonalities between them as edges.

To focus on more specific information about
network behavior, Perdisci et al." addressed a
malware clustering system by extracting HTTP
traffic traces and analyzing their similarity. Differing

from previous works, Rafique et al™

proposed a
framework for extracting features from the protocol
and traffic states in order to use the information
obtained from all protocols. They assessed the
applicability  of  various  evolutionary  and
non-evolutionary algorithms for their malware
family classification framework. Ahmed et al"
addressed the classification of packet contents to
detect executable code in traffic.

Nari et al.!"”

studied graph similarity analysis for
classification of malware. Graphs are built with
behavioral profiles that represent malware network
activity such as DNS, SMTP, and HTTP. However,
they did not consider the dependency on network
flow or capture the network behavior of malware
well enough to distinguish between different
malware. In contrast to these approaches, we use
only network traffic flow data and generate
representations of malware network behavior for
appropriate classification.

It is important not only for research on
classification, but also for detecting malicious

L] proposed a

behavior in the network. Jung et al.
network defense mechanism based on isolated
networks. In the paper, on their mechanism, every
mobile device go through the integrity check system
implemented in an isolated network, and can get the
network access only if it has been validated
successfully.

Sequence alignment is a method that compares
two or more character sequences to obtain their
Malware

similarities and dissimilarities.
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classification using sequence alignment has been
extensively studied in malware analysis and
detection research to classify normal, misuse, or
unknown behavior. Several studies have proposed
approaches to malware detection and classification.
Inspired by the Smith-Waterman local alignment
algorithm, Coull et al. presented a detection
approach“gl. The authors later enhanced it and
presented a sequence alignhment method using binary
scoring and a signature-updating scheme to detect
masquerade attacks”™. Another recent approach to
detection is analyzing API call sequences and
classifying them as benign or malicious™".

Two techniques for malware classification using
sequence alignment have recently been proposed”‘m.
Both extract more detailed information from binaries
including sequences of API calls and graphical
representations of control flow. We extend the
previous studies that focused on network activity of
sequencing features.

For similarity measurements between variants of
malware, our research adopts the two sequence
alignment algorithms: global alignment
(Needleman-Wunsch) and local
(Smith-Waterman algorithlns)[23’24]. These two

algorithms belong to dynamic programming, which

alignment

is a method for solving complex problems gradually

using recurrence.

. Malware Classification Based on
Network Pattern Using Sequence
Alignment

In this chapter, we describe the proposed method
for malware classification based on network
behavior. Fig. 1. shows an outline of the proposed
method, which is composed of training and
classification phases.

3.1 Feature Extraction from Network Traffic
of Malware

The goal of this work is to classify unknown

malware in accordance with a sequence pattern of
observable features.

The features are extracted from the network
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Fig. 1. Overview of malware classification

traffic flow generated by a dynamic analyzer during
the execution of the malware. To meticulously
classify malware on the basis of its behavior, the
malware analysis system is recommended to suitably
reflect malware activities. Furthermore, for effective
classification the features must be easy to extract
and provide sufficient information to discriminate
between different malware families. We have
obtained both the header and payload of network
packets. However, when using the payload a lot of
storage space and analysis time are required.

On the other hand, the header information of the
packets can be analyzed even if the communication
is encrypted. Accordingly, we decided to use the
flow sequence that is most suitable for observing the
flow of packets.

We use a dynamic analysis method to capture the
network behavior of malware in pcap files. First, the
malware samples are executed by dynamic analysis
systems, and the pcap file is obtained from the result
of the dynamic analysis. The pcap file is analyzed
using Argus, which extracts flow data from network
traffic files. Table 1 provides examples of flow data
extracted from real malware samples. Note that IP
addresses are sanitized for privacy protection. As
shown in Table 1, the flow extracted by Argus
contains all types of protocols of traffic that are
invoked by the malware. Among these protocols,
TCP and UDP can be deeply associated with the

www.dbpia.co.kr
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Table 1. Examples of Flow Data

Dur Seq Proto SrcAddr DstAddr Sport Dport State Dir
2.999957 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT who
0.000000 2 IGMP 10.0.0.0 224.0.0.1 INT —
0.000332 3 ARP 192.168.1.1 192.168.1.2 CON who
0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT who
0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT who
0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT who
0.000000 1 RARP 00:0c:29:89:7d:fa 00:0c:29:89:7d:fa INT who
0.756285 4 UDP 192.168.1.2 10.0.0.1 1037 53 CON A
0.003504 5 TCP 192.168.1.2 *x*212 1038 80 CON —
0.000708 5 TCP 192.168.1.2 *EF212 1038 80 RST —
0.000131 6 UDP 192.168.1.2 192.168.1.255 138 138 INT -
0.000012 6 UDP 192.168.1.2 192.168.1.255 138 138 REQ —

behavior of malware, thus we adopt them as features
for clustering.
A feature used for is not

clustering a

characteristic that only determines whether the
packets are normal or malicious. Rather, it is used
as a representative attribute of the flow element.
Therefore, our method only requires appropriate
of the
preprocessor. We defined 14 features as listed in
Table 2.

First, the 5-tuple (SrcAddr, DstAddr, Sport,

Dport, Proto) and direction (Dir) information, which

extraction flow characteristics as a

can be automatically extracted from a packet header,
are defined. Dir is a feature indicating the direction

Table 2. Features of Flow Data

Feature Name Explanation

Dur Record total duration of flow
Seq Argus sequence number
Proto Transaction protocol (e.g., TCP, UDP, ARP)

SrcAddr Source IP address

DstAddr Destination IP address
Sport Source port number

Dport Destination port number
Dir Direction of transaction (e.g, — < < wWho)
State Transaction state (e.g, INT, CON, RST, REQ)
TotPkts Total transaction packet count
SrcPkts Src — Dst packet count
DstPkts Dst — Src packet count
SrcLoad Source bits per second
DstLoad Destination bits per second

of information flow. If a flow does not include
direction, it is defined as who. However, if a flow
has direction, it is defined as —, <>, or <— The other
features are the duration of the flow (Dur), the
Argus sequence number from the particular session
(Seq), the transaction state of the flow (State), the
total, source, and destination transaction packet
counts (TotPkts, SrcPkts, DstPkts), and the source
and destination bits per second (SrcLoad, DstLoad).

3.2 Feature Clustering with K-means Algorithm

To cluster flow data, we use a K-means algorithm
that is commonly used for unsupervised learning
techniques. In the work of Erman et al.”® K-means
is suitable for classifying traffic flows faster than
other algorithms. It proceeds by selecting k initial
cluster centers and then iteratively refining them. &
is a positive integer number specifying the number
of clusters and has to be given in advance. The four

steps of the K-means clustering algorithm are:

* Select an initial partition with k cluster centers;
repeat steps 2 and 3 until clusters stabilize.

* Initialize the k cluster centroids. This can be done
by arbitrarily dividing all objects into % clusters,
computing their centroids, and verifying that all

different

Alternatively, the centroids can be initialized to k

centroids  are from one another.
arbitrarily chosen, different objects.
e Jterate over all objects and compute the distances

to the centroids of all clusters. Assign each object
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to the cluster with the nearest centroid.
¢ Recalculate the centroids of the modified clusters.

A distance function is required in order to
compute the distance (i.e., similarity) between two
objects. The most commonly used distance function

is the Euclidean distance, defined as follows:

1

Z:(xi 7:’/]')2

@

where X={z, xy.w,, 2} and

Y={y;, Yy Yp_1>Yn} are two input vectors with

m quantitative features. In the Euclidean distance
function all features contribute equally to the
function value. However, since different features are
usually measured with different metrics or at
different scales, they must be normalized before
applying the distance function.

The formula for the square error V' is shown by

Equation (2):

k
V= Z Z |$j - M71|2

i=1jES,

@

The square error is calculated as the square of the
distance between each object x and the center of its

cluster .

The clustering process applies the K-means

extracted as described in Subsection 1. The rationale
of this approach is the assumption that the network
behavior of malware forms different clusters in the
feature space. The flow data may contain outliers
that do not belong to a bigger cluster, yet this does
not disturb the K-means clustering process as long
as the number of outliers is small.

An essential problem of the K-means clustering
method is to define an appropriate number of
clusters k. As an initial value, we choose k to be
in the range 6 to 20, assuming that the flow data of
network behavior form many different clusters.

Table 3 shows an example of clustering for the
condition k=8. In this example, the K-means
algorithm is applied to a Botnet Watcher dataset,
which consists of 91,441 flows generated by 766
malware samples. Clusters are assigned a label from
A to H, as shown in Table 3.

3.3 Network Flow Sequence Pattern Generation

In this step, a sequence pattern for each variant of
malware is generated using the clustering result. The
sequence represents the extracted behavior of the
malware.

When two sequence patterns are similar, the same
network activity may be the cause. We can identify
malware families that have distinctive network
behavior. Table 4. shows an example of sequence
patterns generated by K-means clustering with

k=8. As shown in Table 4, similar sequences can

clustering algorithm to datasets that contain the flow possibly belong to the same malware family.
Table 3. Result of Flow Clustering (k= 8)
Cluster A B C D E F G H Total
Number of Flows 3,810 15,545 3,265 3,827 2,541 4,665 12,615 8,342 54,610
Percentage (%) 6.9 28.5 6.0 7.0 4.6 8.5 23.1 15.2 100

Table 4. Example of Sequence Data (k= 38)

Malware name

Sequence data

Virus.Sality.gen. 1

BGGBGGBBBGGBGGBGGBGGEEEEEEEEEBEEEEEEEEEEEEBE. .

Virus.Sality.gen.2

CBGHBGGBBBGGBGGBGGBGGEEEEEEEEEEEEEEEEEEEEECEBE...

Backdoor.Simda.abxr

DCCCDBAACAAADABAGGADDDDGGBDDCCBD

Backdoor.Simda.acak

DGHGGGHGGGGGGGGGHGGGGGDGGGGGGGGGGGGGBGGHH. ..

Backdoor.Simda.acam

DGHGGGHGHHGGGGGGHGGGGGGGGGGGGGGGGGGGGBGB...

Backdoor.Simda.acbg

GHGGGHHHGGGGGGGHGGGGGCGGGGGGGGGGGGGGGBGB...
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Through the matching of the activity and sequence
of the malware, we determine the efficiency of the
method.

Figure 2 presents the sequence patterns generated
by The of
Trojan.Win32.AntiFW is to modify system settings

K-means  clustering. objective

that allow or augment potential malware behavior. It
downloads files and makes an attempt at registry
modification. In the next step, therefore, the
sequence patterns are used to identify the malware

families.

Trojan.Win32.A
ntiFwW

BEEJGJGAAABEKKBEKKK
ABBBBEAAA

Fig. 2. Sequence patterns generated by K-means clustering

3.4 Classification using Sequence Alignment

In this step, we classify malware samples using
sequence alignment. As an example, we have
aligned the malware samples Virus.Sality.gen.I and
Trojan-Spy.Win32.Zbot.rfjs from Table 2 using two
algorithms.  The algorithm
attempts to align every element in every sequence.

On the other hand, the Smith-Waterman algorithm

Needleman-Wunsch

attempts to align only part of the two sequences.
Therefore, the Smith-Waterman algorithm obtains a
shorter total alignment than the Needleman-Wunsch
algorithm.

In both methods, the similarity between two

sequences is given as follows:

Length of subsequence with highest score

Similarity =
Ay = ptal length of sequence used by alignment

These two algorithms have drawbacks when
applied to our method. When the difference between
the lengths of sequences is large, they are difficult
to define as similar even if their similarity is 100%.
In the so-called Unified algorithm, we calculate the
average of the similarities obtained from the two
algorithms.  The the  Unified

algorithm is given as follows (where /V refers to

similarity from

Needleman-Wunsch, S refers to Smith-Waterman,
and U refers to the Unified algorithm):

Similarity y+ Similarity ¢
2

Similarity =

As an example, the results for the similarity
between the variants of Sality and Zbot(Sality 1:
Virus.Sality.gen.1, Sality 2: Virus.Sality.gen.2, Zbot:
Trojan-Spy.Win32.Zbot.rfjs) are shown in Table 5.
The that the Unified algorithm
overcomes the shortcomings of the two individual
algorithms.

results show

Table 5. Example of Similarity Results (%)

Similarityg | Similarity,, | Similarity,,
Sality 1 & 2 91.2 91.0 91.1
Sality 1 & Zbot 94.7 5.6 50.2

IV. Experiments and Results

In this chapter we demonstrate the results of our
experiments. We have experimented with various
algorithms and data to classify malware using
sequences of network behavior. In Section 1, we
introduce the dataset used in the experiments of
Sections 2. Section 2 presents an experiment that
used malware collected from an actual Internet
environment for one whole year. Finally, in Section

3 we discuss the result of experiment.

4.1 Data of Malware Samples and Family
Labeling

We suppose that the malware samples were
executed by a dynamic malware analyzer to collect
network traffic capture files. Our method, therefore,
adopts traffic data collected by Botnetwatcher'”,
which has been developed by NTT Secure Platform
Laboratories and connected to the Internet. This
dataset consists of the network traffic (pcap file)
gathered during a 30-minute execution of each
malware sample using a dynamic malware analysis
system. Many dynamic analysis systems have
difficulty the
accurately because they operate under the controlled
of the the

Botnetwatcher used in our method conducted a

analyzing activity of malware

environment Internet. However,
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real-time analysis that can be associated with an
open environment.

The dataset also includes labels assigned by
eleven kinds of anti-virus software that scanned each
malware sample. Of these, we used the labels from
Kaspersky to create labeled datasets because the
classification criteria applied by Kaspersky are based
on the behavior of malware. Kaspersky has
classified malware using all features of malware,
including network traffic flow. In contrast, our
method only focuses on the network behavior of
malware extracted from network flow. In the
experiment, we compared the classification of
Kaspersky and our classification method. If the
results of the comparison are similar to the labeling
of Kaspersky, it is possible to prove the
effectiveness of our classification based on network
behavior.

To acquire the family name of malware programs,
we use the naming rule of Kaspersky Anti-virusl).
All objects detected by Kaspersky are named as

follows:

[Prefix:]Behaviour.Platform.Name[. Variant]

The prefix identifies the sub-system that detected
the object, but it is not an obligatory part of the
name and may not be present. The behaviour
specifies what the detected object does, and the
platform is the environment in which the program
code is executed. This can refer to both software
and hardware. The name is the official name given
to the detected object, which defines the family of
detected objects. Finally, a variant is a modification
of a detected object.

In the

[Prefix:]Behaviour.Platform.Name as the malware

experiment, we regard

family name. For example, the family name of
Backdoor.Win32.Agent.a is Backdoor.Win32.Agent,
and Backdoor.Win32.Agent and Trojan. Win32.Agent
are different family names. Because anti-virus
venders use their own name rules, a situation in

which different anti-virus venders assign the same

1) http://www .securelist.com/en/threats/detect?chapter=136
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family name to a malware program is rare.

4.2 Classification Experiment

In this section, we expand our dataset to include
malware samples collected from October 2013 to
October 2014 using Botnetwatcher mentioned in
Section 1.

4.2.1 Training and Testing Datasets

We identified 45 families of malware samples
using Kaspersky?). We divided them into training
and testing datasets. We extracted approximately
10% of samples from each of the 45 families of
malware samples in the training dataset (102
samples), and obtained the remaining samples from
the testing dataset (664 samples). To obtain a
balanced training dataset, we limited the distribution
of each family in the training dataset to 40% of the
entire dataset. Table 6 shows the number of families
and samples in the training and testing datasets. The
total number of samples is 766.

The number of malware that have another
malware sample in the same family group less than
9 is 110. The number of malware that have another
malware sample in the same family group more than
10 and less than 100 is 453. The number of
malware that have another malware sample in the
same family group more than 100 is 203.

Table 7 shows part of the similarity between the
variants of Backdoor.Win32.Tofsee, which is one of
the families we identified. In Table 7, the maximum
and minimum values of the similarity are 91.27%
and 76.63%, respectively, and their table cells are
highlighted. The average similarity percentage
between the variants of Backdoor.Win32.Tofsee is
84.62%.

Table 8 shows part of the similarity between the
variants of Backdoor.Win32.Simda, which is one of

the families we identified. In Table 8, the maximum

Table 6. Numbers for the Training and Testing Datasets

Training Testing Total
# of Families 45 45
# of Samples 102 664 766

2) http://www.kaspersky.com/
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Table 7. Similarity between Variants of Backdoor.Win32.Tofsee (%, k= 16)}
Tofsee 1 Tofsee 2 Tofsee 3 Tofsee 4 Tofsee 5
Backdoor.Win32.Tofsee 1 - - - - -
Backdoor.Win32.Tofsee 2 86.14 - - - -
Backdoor.Win32.Tofsee 3 87.51 91.27 - - -
Backdoor.Win32.Tofsee 4 81.57 76.63 78.27 - -
Backdoor.Win32.Tofsee 5 84.21 90.32 87.46 78.36 -
Table 8. Similarity between Variants of Backdoor.Win32.Simda (%, k= 16)}
Simda 1 Simda 2 Simda 3 Simda 4 Simda 5
Backdoor.Win32.Simda 1 - - - - -
Backdoor.Win32.Simda 2 42.70 - - - -
Backdoor.Win32.Simda 3 38.36 94.23 - - -
Backdoor.Win32.Simda 4 39.75 92.00 90.38 - -
Backdoor.Win32.Simda 5 42.24 89.12 86.54 86.27 -
and minimum values of the similarity are 94.23% Needleman-Wunsch algorithms, respectively. By

and 38.36%, respectively, and their table cells are
highlighted. The
between the variants of Backdoor.Win32.Simda is
59.22%.

average similarity percentage

4.2.2 Classification Accuracy

We measured the similarity between the training
and testing datasets, that is, we calculated the
similarity between one testing dataset and each
individual training dataset. Then, we sorted them by
ranking from No.l1 to No.102 in decreasing order of
similarity and made comparisons using the labels
assigned by Kaspersky. By taking the comparison
results into account, the testing data are classified
into the family with the highest degree of similarity.
We define the following indices for performance

comparison:

# of T dassified correctly
#of T

X where T represents malware samples of the

Aassification Accuracy =

testing dataset.

in Table 9. For the
calculations, we used the three algorithms referred to
in Chapter 3. We obtained similarities of 35.4% and
40.1% by the

The results are shown

using Smith-Waterman  and

using the Unified algorithm, which is the average

value of the two algorithms, we obtained the highest
result of 40.4 %.

Table 9. classification Accuracy
(%, k=16, Length =100)}

St Smith-Water | Needleman- Unified
man Wunsch
Accuracy 354 40.1 40.4

4.3 Discussion

Figure 3 indicates the classification accuracy with
the three algorithms. According to Figure 3, when
we take care of classification within the Top 3, the
classification accuracy exceeds 65%. This result
the feasibility whthin the Top 3, the

classification accuracy exceeds 65%. This result

shows

shows the feasibility of our method by improving
our algorithm.

On the other hand, Trojan.Yakes accounts for
almost half the samples. Also, some families, such
as Trojan.Win32.Yakes and Trojan-Ransom.Win32.
Foreign, have much larger numbers of samples than
the other families. This is because the dataset that
we used is real malware collected from October
2013 to October 2014, focusing on a specific

distribution of malware samples. For future work,
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Fig. 3. Classification Accuracy by Ranking (%, k=16,
Length =100)

we will complement the distribution of malware
samples.

As shown in Table 9, the highest classification
accuracy was obtained by the Unified algorithm,
which is the average value of the Smith-Waterman
and Needleman-Wunsch algorithms, and not by a
method using only one algorithm. This shows that
using the Unified algorithm can overcome the
individual shortcomings of the two algorithms. We
obtained a low accuracy, less than 40%, which we
must devise measures to improve.

Finally, the method needs to be improved to
classify unknown malware. In this study, we
performed experiments with only known families.
For future work, we need to improve the
classification method so it can be used with new

malware.
V. Conclusion

In this paper, we proposed a malware
classification method based on sequence patterns
generated from the network flow of malware
samples. The goal was to classify malware by using
only its network behavior.

The method begins by obtaining flow data from
traffic extracted by a dynamic analysis of malware.
We extract features of the flow and cluster them
using a K-means algorithm. On the basis of the
clustering result, sequence patterns are generated.
These patterns represent the network behavior of a
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malware family. Finally, we classify the malware
behavior by using a sequence alignment algorithm.
In particular, we have explored malware behavior by
adapting the Needleman-Wunsch and
Smith-Waterman algorithms.

We evaluated our method with 766 malware
samples and obtained a classification accuracy of
approximately 40%. The average of the similarity
between samples from the same malware family is
40.4% in the experiment using an expanded dataset.
It is useful to detect malware behavior without
having to deeply analyze its binary.

Our future work will focus on studying the
classification of unknown malware against known
malware families using network behavior. We intend
to continue developing and testing the classification
system while expending our malware samples and
refining our classification algorithm. We will also
collect and analyze malicious code identified by the
author and reflect it in the our system. It will be
possible to predict and identify attack groups.
Furthermore, we will erect malicious code data sets
for comparing and verifying their classification
accuracy so that they can be compared with other

classification methods.
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