
OpenStack 클라우드에서 VM의 자원 이용도 기반 동적

마이그레이션을 위한 프레임워크

아팍 무하마드 , 송 왕 철°

Framework for Resource Utilization-Based Dynamic Migration of

VMs in OpenStack Clouds

Afaq Muhammad , Wang-Cheol Song°

요 약

가상화기술은 클라우드 컴퓨팅에서 여러 가지 필수적인 특성들을 제공한다. 그러한 한 가지 특성은 가상 머신

(VM)들의 라이브 마이그레이션인데, 이는 서비스 중단 없이 물리적 호스트들 사이에서 하나의 VM에 대한 완전

한 상태를 전송하는 프로세스이다. 이러한 기능은 시스템 재구성, 장애 허용성, 에너지 효율성, 부하 분산 및 시스

템 유지 등의 목적으로 널리 쓰여오고 있다. 대부분의 기존 연구들에서는, 어느 결함있는 VM들이 어느 물리 머신

으로 전달되어야 하는냐를 자원 이용성에 따라 결정한다. 하지만, 역동적인 VM 마이그레이션에 대해서는 아주 적

은 구현사례만이 있을 뿐이다. 이러한 목적을 위해서, 본 논문에서 우리는 Openstack 클라우드에서의 역동적인

VM 마이그레이션을 위한 프레임워크를 제안한다. 이 프레임워크는 Openstack에서 역동적인 VM 마이그레이션을

위해서 제안한 과부화 검출, VM 선택, VM 할당 알고리즘들을 구현하고 있다. 실험을 통해서, 제안된 알고리즘들

이 기존 알고리즘들보다 더 성능이 앞서고 있음을 보였다.

Key Words : Cloud Computing, Virtualization, OpenStack, Dynamic VM Migration, Resource Utilization

ABSTRACT

Virtualization technology provides several vital features in cloud computing. One such feature is live migration

of virtual machines (VMs). It is a process of transferring the complete state of a VM between physical hosts

without interruption of any service. This capability is being widely used for the purpose of reconfiguration and

fault tolerance, energy efficiency, load balancing, and system maintenance. Most of existing studies make decision

on which defective VMs should be transferred to which suitable physical machines (PMs) in terms of resource

utilization. However, there are very few implementations available for dynamic VM migration. To that end, in

this paper, we propose a framework for dynamic VM migration in OpenStack clouds. The framework implements

the proposed overload detection, VM selection, and VM allocation algorithms for dynamic VM migration in

OpenStack. Furthermore, with the help of experiments, we show that the proposed algorithms outperform the

algorithms that are considered for the purpose of evaluation.

논문 17-42-08-11 The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08
https://doi.org/10.7840/kics.2017.42.8.1562

1562

※ This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)

funded by the Ministry of Education(NRF-2016R1D1A1B01016322).

First Author : Jeju National University Department of Computer Engineering, afaq24@gmail.com, 학생회원

° Corresponding Author : Jeju National University Department of Computer Engineering, kingiron@gmail.com, 종신회원

논문번호：KICS2017-05-146, Received May 16, 2017; Revised July 25, 2017; Accepted August 3, 2017

www.dbpia.co.kr

논문 / OpenStack 클라우드에서 VM의 자원 이용도 기반 동적 마이그레이션을 위한 프레임워크

1563

Ⅰ. Introduction

Cloud computing platforms such as IBM’s Blue

Cloud, Microsoft’s Azure, and Amazon’s EC2 host

various distributed applications. Service level

agreement (SLA) of these services is a major issue

for determining service providers’s profit and user

loyalty
[1], but SLA requirements are not easy to be

satisfied because of the high variations of Internet

characteristics and workloads. Deploying new

storage elements and new servers are costly choice

that may result in high system management costs

and low server utilization. Migration of VMs across

PMs has the ability to improve service SLA

compliance by reducing resource contention.

The main challenge is that which VM should be

transferred and where the transferred machine should

be located. Most studies focus on resource

utilization to make decision for migration action
[2,3],

but in this case migration action may result in

performance degradation if not handled properly

during the migration process. Different VMs have

different workload characteristics and configurations
[4] that lead to different migration costs.

OpenStack, one of the well-known cloud

platforms for both public and private clouds, was

announced in 2010
[5]. Among several existing

sub-projects, OpenSack Nova[6] is the core project of

OpenStack, which provides infrastructure as a

service (IaaS) on demand. An instance/VM can be

launched by means of OpenStack Nova on the

efficient compute node, which meets the customer’s

requirements. Although, OpenStack supports live

migration technique, the administrator has to

manually intervene within the appropriate time to

migrate a VM instance from one compute node to

another. This feature of OpenStack is useful

whenever a compute node, where many VM

instances are running, needs to redistribute or

maintain load. However, the necessary requirement

for conducting a dynamic live migration, which

guarantees the QoS and SLA, is the VM migration

decision taken at a suitable time. In additoion, due

to a huge number of processes running on the

compute nodes and VM instances, the load is

dynamic in nature. This dynamic nature of load

demands the process of VM migration to respond

dynamically upon receiving the load statistics at

each periodic interval. This lack of dynamic VM

migration leads to search for an appropriate method

to monitor and measure the load in order to migrate

VMs to efficient compute nodes. This method

should be adaptable with the resource usage

requirement of on demand up/down scaling.

In addition, recent virtualization techniques do not

provide enough performance isolation among the

VMs
[7]. The contention for physical resources among

VMs leads to different performance impact level

among the VMs. To that end, in this paper, we

introduce an architecture and implementation of a

framework for dynamic VM migration in cloud data

centers based on the OpenStack platform. The

deployment of the framework includes a controller

node and multiple instances of compute nodes. The

purpose of the framework is to provide dynamic live

migration to adjust the VM instances on compute

nodes to offload a number of VMs from an

overloaded compute node. We address this issue by

focusing on the following key points:

∙Detecting an overloaded compute node, so that

some VM instances may be migrated to other

efficient compute nodes.

∙Based on CPU and RAM utilization, selecting the

overloaded VM instance(s) from a compute node.

∙Locating the selected VM instance(s) for

migration on other efficient compute nodes.

The remainder of the paper is organized as

follows. In Section II, we discuss the related work.

In Section III, the architecture of the proposed

framework, and the proposed algorithms are

presented. In Section IV, the framework is

experimentally evaluated and the results are

analyzed. In Section V, the paper is concluded with

a discussion of scalability and future research

directions.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08

1564

Ⅱ. Related Work

One of the early works[8], which focuses on

dynamic VM migration, was implemented to offload

an overloaded physical machine. Although, the

model designed for the optimization of the dynamic

VM allocation has considered the cost of VM

migration, the authors did not implement any

algorithm for deciding when it was vital to perform

the VM allocation optimization. The designed model

was invoked periodically to adjust the VM

allocation, which needs a supplementary

performance any necessary demand for optimization

operation.

A dynamic resource placement for OpenStack has

been implemented in [9], which is based on a

protocol to interact between peer servers. The

operation was periodically performed, and the peer

servers were chosen randomly without any

requirement to exchange their state. Furthermore,

performance degradation of migration operation was

not taken into account.

In [10], authors proposed a technique for

placement of VMs when the SLA of hosted

applications was violated. With the same technique,

authors in [11] examined the performance of VM

placement decision by automating the response time

which was described in the SLAs. This technique

needed more time for VM placement and the

duration of SLA violation was increased.

In [12], authors have used the threshold based on

the utilization of resources such as network

bandwidth, RAM, and CPU to decide when to

migrate VM(s) from an overloaded PM to an

efficient one. In [13], authors handled resource

placement based on the response duration of QoS

conditions at the server and the cluster level by

implementing control loops. In [14], a remaining

utilization-aware (RUA) algorithm has been

proposed for VM allocation. In this work, the

overloaded PM is first detected by means of the

proposed algorithm, and then the migration for some

VMs is conducted.

Authors in [15] proposed a system for managing

resources of virtualized data centers by means of

local and global policies. The system on the local

level was responsible for implementing the power

handling strategies for a guest host, whereas the

global policies were responsible for managing the

consolidation of VMs. However, the QoS

requirements were not taken into account by the

global policies.

In [16], authors proposed an algorithm for

dynamic VM migration based on time-series

analysis, and predicting of the resource demand. In

[17], the authors devised the issue of VM placement

as stochastic optimization issue with a constraint on

the host overload probability, considering multiple

resource constraints. A disadvantage of all the

aforementioned approaches is that they are

centralized, i.e., a single algorithm running on the

master host (controller node in OpenStack) limits the

global view of an overall system to enhance the VM

instance placement. Furthermore, by the use of such

a centralized approach, the scalability of the system

is limited with an increase in the number of physical

machines (compute nodes in OpenStack).

In this work, we propose an approach

implemented in a real environment for the

well-known cloud computing software called

OpenStack. In this approach, every compute node

sends RAM and CPU utilization statistics of each

VM instance that is deployed on this compute node.

Based on these statistics, the algorithms running on

the control node detect an overloaded VM instance,

select it, and place it on an efficient compute node.

Ⅲ. System Model

The aim of our proposed framework is to provide

dynamic VM migration based on the OpenStack

platform. The framework implements essential

components for monitoring hypervisors and VMs,

gathering resource utilization statistics, sending

messages and instructions between the system

elements, and conducting VM live migrations. It

enables the implementation of the three proposed

algorithms for dynamic VM migration: detecting

overloaded compute node, selecting a VM based

resource utilization, and allocating a VM to an

www.dbpia.co.kr

논문 / OpenStack 클라우드에서 VM의 자원 이용도 기반 동적 마이그레이션을 위한 프레임워크

1565

Fig. 1. Proposed Framework

efficient compute node.

Fig. 1 depicts the overall architecture of the

proposed framework that is deployed in OpenStack

to avoid an overloaded compute node by conducting

dynamic VM migration at appropriate time. It

includes four fundamental building blocks: (i) Stats

Aggregator, (ii) Stats Database, (iii) Migration

Manager, and (iv) Algorithms Repository. In the

following, we will discuss each of the framework’s

components in detail.

3.1 Stats Aggregator
A component that is deployed on the control node

and is responsible for collecting statistics on the

resource utilization by VM instances and hypervisors

and then forwarding it to the statistics database,

which can also be shared with other components.

The statistics are collected by means of libvirt’s API
[18]

in the form of the RAM consumed by VM instances

and hosts. For the collection of statistics related to

CPU utilization of VM instances, we have installed

and configured the Ceilometer
[19] project of

OpenStack on control node. The RAM and CPU

statistics are both collected periodically and

submitted to the Stats Database module of the

framework.

3.2 Stats Database
The stats database is used for storing historical

statistics on the resource utilization by VM instances

and hypervisors. The database is populated by the

stats aggregator deployed on the same control node.

The RAM and CPU utilization statistics of VM

instances are periodically submitted to this module,

which are then used by the migration manager to

determine the VM instances that are consuming

most of their respective compute nodes’ resources.

3.3 Migration Manager
The migration manager is responsible for

conducting VM migrations and making VM

allocation decisions, which results in offloading

VMs from an overloaded compute node. It runs the

overload detection algorithm when resource

utilization statistics are received from the Stats DB

module. If an overload condition is detected, it runs

the VM selection algorithm to select the VM

instances, which are utilizing maximum RAM and

CPU resources. Then it determines the efficient

compute nodes in order to place selected VMs on

them, and invokes OpenStack API for live migration

of the selected VM instances.

3.4 Algorithm Repository
This repository is deployed to store custom

decision-making algorithms for dynamic VM

migration, i.e., compute node overload detection,

VM selection, and VM allocation algorithms. Based

on these algorithms, the migration manager module

determines the overloaded compute node, selects the

VM instances that are to be migrated, as well as

initiates VM migrations and makes VM placement

decisions.

3.5 Proposed Structure and Algorithms
The migration process should be initiated offload

the compute nodes based on a predefined threshold.

A compute node is offloaded by VM migrations,

which can make the load below the predefined

threshold. Fig. 2 depicts the exchange of messages

for handling a compute node overload situation.

First, the migration manager detects an overload of

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08

1566

Fig. 2. Exchange of messages between components for
VM instances migration

the compute node using the overload detection

algorithm. Then, by means of proposed VM

selection algorithm, the migration manager selects

VM instances based on their CPU utilizations. Next,

the migration manager initiates the VM allocation

algorithm with the list of selected VMs along with

their utilized resources and states of the compute

nodes obtained from the stats database as arguments.

Finally, based on the VM allocation generated by

the algorithm, the migration manager requests the

OpenStack Nova API for the appropriate VM live

migration.

3.5.1 Overload Detection Algorithm

The overload detection algorithm shown in

Algorithm 1 is a simple algorithm which detects an

overloaded compute node if the average of the last

n CPU utilization measurements is greater than the

pre-defined threshold value.

3.5.2 VM Selection Algorithm

Once an overloaded compute node is detected, it

is necessary to determine what VMs are the best to

be migrated. This issue is solved by algorithms for

VM selection. One such example can be selecting a

VM randomly from a pool of VMs assigned to the

host. Alternatively, based on our proposed algorithm

called minimum RAM maximum CPU utilization

(minRmaxC) algorithm as shown in Algorithm 2,

VMs with the maximum amount of RAM usage are

first selected, and then out of these selected VMs,

the VMs with the maximum CPU utilization

averaged over the last n quantifications are selected.

3.5.3 VM Allocation Algorithm

In order to get the efficient compute nodes for

hosting VM instances, the VM allocation algorithm

engages an OpenStack Nova-scheduler which

conducts an overall allocation process. More

precisely, it returns the efficient compute nodes on

which the VM instances would be placed. Therefore,

the algorithm first selects a list of the light load

compute nodes for the heavy load VM instances.

Then, this list is delivered to the OpenStack-Nova

API in order to initiate the VM migration process

between source and destination compute nodes. The

pseudo-code for algorithm is shown in Algorithm 3,

which explains the method of selecting the light

load compute node for the heavy load VMs.

www.dbpia.co.kr

논문 / OpenStack 클라우드에서 VM의 자원 이용도 기반 동적 마이그레이션을 위한 프레임워크

1567

Ⅳ. Experiment and Results

The proposed architecture has been validated in

the cloud computing platform-based testbed.

OpenStack Mitaka release has been deployed on the

testbed. The deployment includes one control node

and four compute nodes, all running Ubuntu 14.04

as an operating system. The OpenStack control node

runs the Identity service, Image service, management

portions of Compute, management portions of

Networking, various networking agents, and the

dashboard. It also includes supporting services such

as an Sequential Query Language (SQL) database,

message queue, and (Network Time Protocol) NTP.

Each compute node runs the hypervisor portion of

Compute that operates instances.

In our scenario, Compute uses QEMU hypervisor
[20]. The compute node also runs a Networking

service agent that connects instances to virtual

networks and provides firewalling services to

instances via security groups. The testbed also

consists of a separate machine that has ONOS

installed in it. Each node of OpenStack (control

node and compute nodes) is connected to ONOS
[21]

SDN controller via management network. Each

compute node is connected to one another via a

Data Tunnel Network, whereas to the Internet via

External Network.

After the successful deployment, it is necessary to

generate the work load in an appropriate way in

order to reproduce a realistic data. For this purpose,

we used a software called Lookbusy
[22], which is a

simple application for load generation on a Linux

system. It allows to generate predictable, fixed loads

on CPUs, and also maintain selected amounts of

memory active.

We performed several experiments to evaluate the

proposed algorithms. For this purpose, the proposed

overload detection algorithm have been analyzed for

two cases, i.e., the impact on an overall system

without and with the execution of this algorithm.

The proposed VM selection and VM allocation

algorithms have been compared with random VM

selection and random VM allocation algorithms. The

proposed algorithms have been also compared with

the existed algorithms in literature. We used a VM

instance type with 32 MB amount of RAM allocated

to it. We have launched 8 VM instances on compute

node 1, 7 VM instances on compute node 2, 5 VM

instances on compute node 3, and 3 VM instances

on compute node 4. Load has been generated on

random VM instances of compute node 1, which

results in an increased CPU utilization of the VM

instances.

During the experiment, the overload detection

algorithm have been executed by the migration

manager module, which detects an overloaded

compute node as soon the CPU utilization surpasses

the pre-define threshold value. The performance of

our proposed overload detection algorithm has been

compared for two scenarios: 1) overload situation

without any algorithm used, and 2) direct overload

detection
[23]. The proposed algorithm detects an

overloaded compute node if the average of the last

n CPU utilization measurements is greater than the

pre-defined threshold value, whereas the direct

overload detection detects an overloaded compute

node as soon as the CPU utilization surpasses the

pre-define threshold value. The drawback in direct

overload detection is that most of the times a

compute node goes above the threshold for a very

short period of time because there are always CPU

utilization spikes in real time while performing

tasks. In this case, a compute node would be

detected as an overload node as soon as its CPU

utilization is above the threshold for a very short

period of time. The granularity can be selected

according to the requirement; however, in most of

the cases the system is not too sensitive to the CPU

overloads. In the case when no overload detection

algorithm is executed, the compute nodes stay

overloaded, which may result in the degradation of

an overall system/service. Fig. 3 depicts the

detection of compute node for each run of the

proposed overload detection and direct overload

detection algorithms. It is obvious from the figure

that the compute node is detected as an overloaded

compute node by direct overload detection algorithm

as soon as it surpasses the threshold value of 80%

CPU utilization. On the other hand, the proposed

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08

1568

CPU(%)
without

algorithm

CPU(%)
direct

threshold
algorithm

CPU(%)
proposed

OD
algorithm

Number of
runs

62 40 46 1

65 52 43 2

72 90 56 3

77 72 72 4

87 54 84 5

93 50 87 6

96 45 90 7

89 55 83 8

85 68 73 9

83 84 67 10

84 77 54 11

89 63 46 12

91 53 44 13

90 48 43 14

82 44 43 15

Table 1. Overloaded Compute node situation

Fig. 3. Performance analysis of overload detection
algorithm

Fig. 4. Performance analysis of proposed minRmaxC VM
selection algorithm

overload detection algorithm detects an overloaded

compute node if the average of the last n CPU

utilization measurements is greater than the

pre-defined threshold value. In the case when the

algorithm is not executed, there is no overload

detection even if the CPU utilization surpasses the

threshold value of 80%.

It is also obvious from Table 1 that a compute

node is detected as an overloaded compute node for

each run of the proposed overload detection

algorithm as soon as it surpasses the threshold value

of 80% CPU utilization. On the other hand, when

the algorithm is not executed, there is no overload

detection even if the CPU utilization surpasses the

threshold value of 80%.

Once an overloaded compute node has been

detected, the next step is to select the VM instances

which are consuming most of the resource of that

compute node. These VM instances can be selected

randomly, but this may lead to performance

degradation because the selected VM instances may

have maximum unutilized RAM and minimum CPU

utilization at the time of selection. We address this

issue by proposing minRmaxC algorithm, which

selects VM instances on the basis of minimum

RAM and maximum CPU utilization. It accepts

historical data on the resource usage by VM

instances running on the compute nodes and returns

a set of VM instances to be selected. The

performance of the proposed minRmaxC algorithm

is compared with random VM selection and

maximum utilization
[24] algorithms on the basis of

the maximum CPU utilization. It is obvious from

Fig. 4 that the VM instances with the maximum

CPU utilization are selected by means of minRmaxC

algorithm, whereas the random VM selection

scheme selects VM instances regardless of the CPU

utilization for each run. Although, the maximum

utilization algorithm selects VMs which have higher

CPU utilizations than the VMs selected by proposed

minRmaxC algorithm, the former does not consider

the RAM factor when selecting VMs, which may

www.dbpia.co.kr

논문 / OpenStack 클라우드에서 VM의 자원 이용도 기반 동적 마이그레이션을 위한 프레임워크

1569

Fig. 5. Performance analysis of the proposed VM
allocation algorithm

CPU(%)
random VM

selection
algorithm

CPU(%)
maximum
utilization
algorithm

CPU(%)
proposed

minRmaxC
algorithm

Number
of runs

28 82 75 1

35 85 74 2

54 83 83 3

52 91 70 4

61 87 66 5

71 87 79 6

63 90 83 7

49 92 80 8

38 84 76 9

Table 2. VM selection algorithm

CPU(%)
random VM

allocation
algorithm

CPU(%)
First Fit
algorithm

CPU(%)
proposed

VM
allocation
algorithm

Number of
runs

46 26 22 1

68 23 25 2

76 24 21 3

78 28 24 4

81 33 18 5

59 27 21 6

63 22 24 7

65 31 28 8

55 37 27 9

Table 3. VM allocation algorithm

have effect on the minimum migration time required

for migrating the selected VMs.

The same behavior is obvious from Table 2 in

which the proposed minRmaxC VM selection

algorithm selects VM instances on the basis of

maximum CPU utilization, whereas the random VM

selection algorithm selects VM instances regardless

of the CPU utilization for each run.

After selecting the overloaded VM instances, the

migration manager module runs the VM allocation

algorithm to place the selected VM instances on an

efficient compute node. The performance of the

proposed algorithm is compared with random VM

allocation scheme and first fit VM allocation

algorithm[25]. The first fit algorithm starts with the

first compute node and determines the availability of

the required CPU resources. If it finds enough

resources, it places the migrated VM on that

compute node, otherwise goes to the next compute

node. On the other hand, our proposed algorithm

finds the most efficient compute node among all the

nodes. For this purpose, it calculates the mean CPU

utilization and mean RAM utilization to determine

the most efficient compute node from a list of

compute nodes. If the calculated mean values satisfy

the requirements of the migrated VM, it selects that

compute node for VM placement. In case of random

VM allocation scheme, the VMs are placed on

random compute nodes. Fig. 5 depicts the

comparison of our proposed VM allocation

algorithm with the random VM allocation algorithm

and first fit VM allocation algorithm. It can be

clearly seen that the proposed VM allocation

algorithm outperform the first fit VM allocation

algorithm by selecting light load compute nodes in

terms of CPU utilization. It also clearly outperforms

the random VM allocation scheme in terms of CPU

utilization because the random VM allocation

algorithm may place VMs on already overloaded

compute nodes, which may lead to the performance

degradation of an overall system.

It can also be clearly seen in Table 3 that the

proposed VM allocation algorithm migrates the

selected VM instances to the light load compute

nodes in terms of CPU utilization, whereas the

random VM allocation algorithm on the hand

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08

1570

migrates the selected VM instances to already

overloaded compute nodes.

It is pertinent to mention here that the CPU

utilization shown in Fig. 4 is higher compared to

that of shown in Fig. 5 because the former shows

the CPU utilization of those VM instances which are

consuming most of the resources of a compute node

and thus selected for migration, whereas the latter

shows the CPU utilization of an efficient compute

node which has resources available to accommodate

new VM instances, and thus selected for migrated

VM instances.

Ⅴ. Conclusions

In this paper, we have proposed a design and

implementation of a framework for dynamic VM

migration in OpenStack clouds. The framework

addresses the issue of the dynamic VM migration by

implementing the proposed overload detection, VM

selection, and VM allocation algorithms. It can be

easily deployed to the default OpenStack installation

by communicating with it by means of the public

APIs, and without the requirement of any alterations

of OpenStack’s configurations. The experiment

results show that the proposed framework prevents

compute nodes from getting overloaded, selects the

VM instances which are consuming most of the

compute node’s resources, and migrates them to

other efficient compute nodes. The proposed

algorithms outperform the algorithms that are

considered for the sake of comparison.

In the future, we aim to apply the proposed

framework for further research on dynamic VM

migration and large-scale OpenStack deployments to

improve the utilization of resources.

References

[1] S. Bose, A. Pasala, D. Ramanujam A, S.

Murthy, and G. Malaiyandisamy, “Sla

management in cloud computing: A service

provider’s perspective,” Cloud Computing, pp.

413-436, 2011.

[2] M. Bichler, T. Setzer, and B. Speitkamp.

“Capacity planning for virtualized servers,” in

WITS, vol. 1, Milwaukee, Wisconsin, USA,

2006.

[3] G. Khanna, K. Beaty, G. Kar, and A. Kochut.

“Application performance management in

virtualized server environments,” in IEEE/IFIP

NOMS 2006, pp. 373-381, 2006.

[4] G. Jung, K. Joshi, M. Hiltunen, R.

Schlichting, and C. Pu, “A cost-sensitive

adaptation engine for server consolidation of

multitier applications,” Middleware 2009, pp.

163-183, 2009.

[5] O. Sefraoui, M. Aissaoui, and M. Eleuldj.

“OpenStack: Toward an open-source solution

for cloud computing,” Int. J. Computer Appl.,

vol. 55, no. 3, Jan. 2012.

[6] OpenStack Nova: http://nova.openstack.org/,

2011.

[7] J. Y. Choi, “Virtual machine placement

algorithm for saving energy and avoiding heat

islands in high-density cloud computing

environment,” J. KICS, vol. 41, no. 10, pp.

1233-1235, Oct. 2016.

[8] A. Verma, P. Ahuja, and A. Neogi, “pMapper:

Power and migration cost aware application

placement in virtualized systems,” in Proc. 9th

ACM/IFIP/USENIX Int. Conf. Middleware, pp.

243-264, 2008.

[9] F. Wuhib, R. Stadler, and H. Lindgren,

“Dynamic resource allocation with

management objectives—Implementation for

an OpenStack cloud,” in Proc. Network and

Service Management (CNSM), Int. Conf. and

Workshop on Syst. Virtualiztion Management

(SVM), pp. 309-315, 2012.

[10] S. Kumar, V. Talwar, V. Kumar, P.

Ranganathan, and K. Schwan, “vManage:

Loosely coupled platform and virtualization

management in data centers,” in Proc. 6th

ICAC, pp. 127-136, 2009.

[11] W. Zheng, R. Bianchini, G. J. Janakiraman, J.

R. Santos, and Y. Turner, “JustRunIt:

Experiment-based management of virtualized

data centers,” in Proc. 2009 USENIX Annu.

Tech. Conf., pp. 18-33, 2009.

www.dbpia.co.kr

논문 / OpenStack 클라우드에서 VM의 자원 이용도 기반 동적 마이그레이션을 위한 프레임워크

1571

[12] X. Zhu, D. Young, B. J. Watson, Z. Wang, J.

Rolia, S. Singhal, B. McKee, C. Hyser, and

D. Gmach, “1000 Islands: Integrated capacity

and workload management for the next

generation data center,” in Proc. ICAC, pp.

172-181, 2008.

[13] X. Wang and Y. Wang, “Coordinating power

control and performance management for

virtualized server clusters,” IEEE TPDS, vol.

22, no. 2, pp. 245-259, 2011.

[14] G. Han, W. Que, G. Jia, and L. Shu, “An

efficient virtual machine consolidation Scheme

for multimedia cloud computing,” Sensors,

vol. 16, no. 2, p. 246, 2016.

[15] R. Nathuji and K. Schwan, “VirtualPower:

Coordinated power management in virtualized

enterprise systems,” ACM SIGOPS Operating

Syst. Rev., vol. 41, no. 6, pp. 265-278, 2007.

[16] N. Bobroff, A. Kochut, and K. Beaty,

“Dynamic placement of virtual machines for

managing SLA violations,” in Proc. 10th

IFIP/IEEE Int. Symp. Integrated Netw.

Management (IM), pp. 119-128, Munich,

Germany, 2007.

[17] B. Nandi, A. Banerjee, S. Ghosh, and N.

Banerjee, “Stochastic VM multiplexing for

datacenter consolidation,” in Proc. 9th IEEE

SCC, pp. 114-121, Honolulu, HI, USA, 2012.

[18] Libvirt, the Virtualization API, http://libvirt.

org/ Accessed in May. 2017.

[19] OpenStack Community, Ceilometer, 2013,

available at: https://wiki.openstack.org/wiki/C

eilometer/. accessed in: May 2017.

[20] QEMU - open source processor emulator,

2009. http://www.qemu.org

[21] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M.

Kobayashi, T. Koide, B. Lantz, B. O'Connor,

P. Radoslavov, W. Snow, and G. Parulkar,

“ONOS: towards an open, distributed SDN

OS,” in Proc. HotSDN '14, pp. 1-6, Aug.

2014.

[22] lookbusy -- a synthetic load generator

[23] A. Abdelsamea, et al., “Virtual machine

consolidation challenges: A review,” Int. J.

Innovation and Appl. Stud., vol. 8, no. 4, pp.

1504-1516, 2014.

[24] M. R. Chowdhury, M. R. Mahmud, and M. R.

Rashedur, “Implementation and performance

analysis of various VM placement strategies in

CloudSim,” J. Cloud Computing, vol. 4, no.

20, Dec. 2015.

[25] M. R. Chowdhury, M. R. Mahmud, and M. R.

Rashedur, “Study and performance analysis of

various VM placement strategies,” IEEE/ACIS

SNPD, pp. 1-6, Jun. 2015.

아팍 무하마드 (Afaq Muhammad)

He received BS degree in

Electrical Eng. from

University of Eng. and

Technology, Peshawar,

Pakistan, and MS degree in

Electrical Eng. with emphasis

on Telecom from Blekinge

Institute of Technology, Sweden in 2007 and

2010 respectively. Currently, he is pursuing his

PhD degree as a KGSP (Korean Government

Scholarship Program) scholar at Jeju National

University. He has worked as a Research

Associate in the Faculty of Comp. Sci. and Eng.

at GIK institute of Eng. Sciences and Technology,

Pakistan. His research interests are software

defined networking, network function

virtualization, wireless networks, and protocols.

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences '17-08 Vol.42 No.08

1572

송 왕 철 (Wang-Cheol Song)

He received B.S. degree in

Food Engineering and

Electronics from Yonsei

University, Seoul, Korea in

1986 and 1989, respectively.

And M.S. and PhD in

Electronics studies from

Yonsei University, Seoul, Korea, in 1991 and

1995, respectively. Since 1996 he has been

working at Jeju National University. His research

interests include VANETs and MANETs, Software

Defined Networks, network security, and network

management.

www.dbpia.co.kr

	Framework for Resource Utilization-Based Dynamic Migration of VMs in OpenStack Clouds
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Related Work
	Ⅲ. System Model
	Ⅳ. Experiment and Results
	Ⅴ. Conclusions
	References

