DEBEris

- 18-43-09-10 The Journal of Korean Institute of Communications and Information Sciences *18-09 Vol.43 No.09
https://doi.org/10.7840/kics.2018.43.9.1483

Tacker 7|49k NFV A|2Hle] 3EF=% AA 7|4k VNF
EuUEy 24

ALl § 7 4

o o 1

o

Workflow Policy-Based VNF Monitoring Model in Tacker-Based
NFV System

Tri-Hai Nguyen®, Myungsik Yoo

(@] oF
=i =

HELZ 75 7MIBHNFV) = "ﬂE‘ﬂi lzale] oA 2 RS AT F e AR UESZ g
2z f3elch AW~ FHAL (CSP)+= NFVE &83le] 7|& st=sdo] AellA] -8¢] 753t VNF
(Virtual Network Function)o]2h= /\JE"]‘H e 2 Au)A AlZe] 7hsslth Be AHdx B3l VNF 2
HelHelxe] g4 EAle Hk=A] thRelxiol she TARIth dA] NFV &4~ —‘j—aioﬂxi VNF Manager
= 27 Wl 27 s AMSle] VNF RUERS Fallgicl ek Alxslex] g2 ¢ VNF7| &4
o] VNF Manger= RUE]EL 913te] W2 =g Aot} slo] A A7} ARkt o] AIE 14
37] 93t H=2 F=29 AAZME VNF BUEE HAYUSES Altste Ad 714 3155 $l3l OpenStack
29 FYEFS] EA NFV SHA|~EHoe|Ad I 3] An]2agl Tackerdlld Fasladch Algke Zuela] wA
&0 2 9ldle] VNF Manager+= P4 2 &84 o7} 7Fsshck

Key Words : NFV, Tacker, VNF Monitoring, Mistral, Workflow Service

ABSTRACT

Network Function Virtualization (NFV) is a new network architecture framework that can provide flexibility
and agility in network infrastructure. By leveraging NFV, a communication service provider (CSP) can deploy
network services as a software known as Virtual Network Function (VNF) running on commercial off-the-shelf
hardware. Despite the multiple benefits that NFV provides, the scalability of VNF monitoring is one of the main
challenges that must be addressed for the deployment of network services in the NFV. In the current NFV
open-source platforms, VNF Manager uses a local variable and local threads to monitor the VNFs. If the system
has many VNFs which need to be monitored, the VNF Manager server will have to run a lot of threads to
monitor them. This causes the scalability problem in the VNF Manager server. To tackle this issue, a workflow
policy-based VNF monitoring mechanism is proposed and implemented in Tacker to demonstrate the feasibility of
the proposed mechanism. Thanks to the proposed monitoring system, the VNF Manager can be more scalable

and effective.

% This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology
Research Center) support program (IITP-2018-2017-0-01633) supervised by the IITP(Institute for Information & communications
Technology Promotion).

+ First Author : (ORCID:0000-0002-2132-2290)Department of ICMC Convergence Technology, Soongsil University, Seoul, Republic
of Korea, nguyentrihai @soongsil.ac.kr, &:13]¢1

° Corresponding Author : (ORCID:0000-0002-5578-6931)School of Electronic Engineering, Soongsil University, Seoul, Republic of
Korea, myoo@ssu.ac.kr, 33!
= E 1 201809-273-D-RN, Received September 6, 2018; Revised September 17, 2018; Accepted September 17, 2018

1483

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’18-09 Vol.43 No.09

I. Introduction

To cope with the increasing network utilization
driven by Internet-of-Things (IoT), and to satisfy the
demand for new network services and performance
guarantees, Network Function Virtualization
(NFV)™M was proposed to reduce cost and accelerate
service deployment for the communication service
providers (CSPs). Network Function Virtualization
(NFV) is an emerging approach in which network
functions are no longer executed by proprietary
hardware appliances, but instead can run on
generic-purpose servers as a software known as
Virtual Network Functions (VNFs). As a result, it
offers an opportunity to significantly increase the
flexibility of infrastructure, simplify the resource
management process, and decrease both capital and
operational costs>?.
NFV architecture

components: (i) Virtual Network Functions (VNFs)

includes three = major

are software implementation versions of network
functions; (ii) NFV Infrastructure (NFVI) contains
the hardware and software components where VNFs
are deployed; and (iii)) NFV Management and
Orchestration (MANO) includes NFV Orchestrator
(NFVO), VNF Manager (VNFM), and Virtualized
Infrastructure Manager (VIM) that orchestrate and
manage the NFVI resources and lifecycle
management of VNFs.

There are many open-source solutions for NFV'*,
The OpenStack cloud platform[s] and Tacker'™
projects are chosen among them. OpenStack is an
open-source cloud computing platform that is
identified as NFVI and VIM in the NFV
architecture. Tacker is an OpenStack based NFV
orchestration and VNF management service to
deploy and operate Virtual Network Functions
(VNFs) on an OpenStack based NFV Platform. It is
based on ETSI MANO Architectural Framework and
provides a functional stack to orchestrate VNFs
end-to-end. Tacker is responsible for VNFM and
NFVO in NFV architecture.

Despite the multiple benefits that NFV provides,
some challenges must be considered and should be

addressed for the deployment of network services.

1484

This research focuses on the challenges of scalable
VNF monitoring in OpenStack Tacker-based NFV
system. The Tacker server needs to monitor various
status conditions of VNF entities that it deploys and
manages. Currently, Tacker server uses a local
variable and local threads to do the VNF
monitoring. If the system has many VNFs which
needs to be monitored, the Tacker server will have
to run a lot of threads to monitor them. As a result,
this causes scalability problem in Tacker server, and
creates the huge impact on the application
interface (API)

performance. In this article, a workflow policy-based

programming function’s
VNF monitoring model is proposed and
implemented in Tacker. Recently, there is an
OpenStack workflow service called Mistral”’, which
is integrated as a part of Tacker system. Therefore,
it is efficient when Tacker-based NFV system uses
Mistral to monitor VNFs.

The remainder of this article is organized as
follows. Section II shows the details of the proposed
VNF monitoring mechanism. The experimental setup
and results are shown in Section III. Finally, the

conclusions are discussed in Section IV.

II. A Workflow Policy-Based VNF
Monitoring Model

In current model, Tacker hosts a local variable
and local threads to monitor VNFs and directly
update the status of VNFs to the database that stores
VNF status information. Therefore, if many VNFs
are deployed, Tacker needs many threads to do the
monitoring which causes a huge impact on the
performance of Tacker. Therefore, it brings
significant benefits if we separate the monitoring of
VNFs as a form of an independent task. As a result,
it can improve the performance of API function and
solve the scalability issue of VNF monitoring in
Tacker VNFM.

Figure 1 illustrates the Mistral workflow
policy-based VNF monitoring mechanism in Tacker.
Mistral project aims to provide a mechanism to
define tasks and workflows without writing code,
manage and execute them in the cloud environment.

www.dbpia.co.kr

= [Tacker 7|4} NFV A|2Hle] 9529 A4 7|4k VNF ZuE]d] =

Tacker Database
> (VNF status
Conductor . .
information)
I A
Message
Queue
workiow | Tacker
.) (NFV MANO)
service)
ping
VNF VNF

Fig. 1. A workflow policy-based VNF monitoring model
in Tacker

In the proposed model, the Mistral workflow service
handles the VNF monitoring task. Tacker will
generate a VNF monitoring workflow and execute it
via Workflow service if there is a VNF configured
with monitor policy. The workflow and execution
will be deleted once the monitored target VNF is

removed. However, the workflow service cannot

directly access to NFV database, hence, the Tacker
Conductor is proposed to access database for the
Mistral workflow service. When the workflow is
removed, the Tacker will kill the workflow action
via the message queue. The workflow service will
use Remote Procedure Call (RPC) to communicate
with Tacker Conductor server. To deal with the
of Tacker
Conductors will be deployed.

scalability monitoring, multiple

Monitor policy is divided into two parts, that is,
policy monitor and policy action. Policy monitor,
that is, ping and HTTP-ping, is implemented as the
VNF Policy Monitor in the workflow service. Policy
action, for example, autoscaling, respawn, log,
log-and-kill, will be called in Tacker Conductor.
Each VNF with monitor policy will generate a
monitor action ID with monitoring workflow stored
as meta information of VNF instance, therefore, it
can be easily managed.

There are three events that trigger this VNF
monitoring mechanism, that is, VNF creation, VNF
deletion, and VNF scaling. The VNF update does

not trigger this VNF monitoring mechanism because

VNFM
(Tacker)

Create VNF with

l VNF monitor :
policy properties
Generate
workflow with
an monitor
action ID
Update the VNF
with the monitor
action ID
Start "VNF Policy
Monitor" module

| |

| |

| |

| |

| |

| |

| |

| |

| |

' I

Workflow

service

VNFM (Tacker)
Conductor

Loo

p according to monitor policy

Execute policy |
action via RPC

Execute action

Update action
via RPC

Fig. 2. Sequence diagram for creating VNF in the proposed model.

1485

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’18-09 Vol.43 No.09

it only configures the Virtual Deployment Units
(VDUs) of VNF and does not affect the VNF health
status. The following sequence diagrams show the
procedure of creating VNF, deleting VNF and
scaling VNF, respectively.

The sequence diagram for creating VNF is shown
in Figure 2. After a user creates VNF with the VNF
monitor policy, the Tacker generates monitoring
workflow and corresponding monitor action ID, then
it calls the VNF policy module in the Mistral
workflow service via RPC channel. When policy
action is needed, the VNF Policy Monitor module
will call Tacker Conductor’s execute-policy-action.
Then, method execute-policy-action in Tacker
Conductor will execute the predefined policy action
such as respawn, log etc. If Tacker Conductor finds
the action is obsolete, it will return bad-action
update via RPC channel to the VNF Policy Monitor
module, then the VNF Policy Monitor in Mistral
workflow service will exit

Figure 3 illustrates the sequence diagram for
deleting VNF. After the user sends the request to
delete the VNF, the Tacker gets monitor action ID
of the VNF and deletes VNF monitoring action
workflow and its execution. Then, Tacker sends the
kill action request to kill the VNF monitoring action
in Mistral workflow service via RPC.

Figure 4 shows the sequence diagram for scaling
VNF. When the VNF is scaling, the Tacker get the
workflow information and monitor action ID of the

o
Workflow o
(¥;i':) service i
(Mistral)
1 1
} Delete VNF with :

| |
| |
| |
VNF monitor | |
policy properties | |
| |
Get workflow with | !
monitor action 1D | !
of the VNF : :
| |
Delete workflow | |
and its execution |
|
|
Kill action via RPC

Fig. 3. Sequence diagram for deleting VNF in the
proposed model.

1486

w
VNFM
(Tacker)

Workflow
Service
Mistral

Scale VNF with

i
i
VNF monitor |
policy properties i
i
i
i
Get workflow with |
monitor action ID |
of the VNF !
i
i
|
Update action via RP1

Fig. 4. Sequence diagram for scaling VNF in the
proposed model.

VNF. Then, it will update action to Mistral
workflow service via RPC. If the VNF scales out,
the VNF monitoring task in policy action will be
added for additional VNF instance. If the VNF
scales in, the VNF monitoring task of removed VNF
instance will be deleted.

. Experiment

Table 1 shows the implementation environment’s
specification. In this experiment, Tacker together
with OpenStack is adopted to build the testbed
environment via the Devstack tool™ which is a
series of extensible scripts used to quickly bring up
a complete OpenStack environment.

The proposed model is implemented on the
Tacker by modifying the “monitor.py” file in
“vnfm” folder. The VNF monitoring workflow
module is written in a new file called
“vnf_monitor_action.py” contained in
“vnfm/workflows” of Tacker source code. The
“conductor” folder, which is conductor server
mentioned before, is also added to the source code
that conducts RPC communication channel for
Mistral workflow service and Tacker Conductor.
The implementation and configuration files used in
this experiment can be found at [9].

Before the VNF is deployed, the VIM needs to
be registered and the VNF Descriptor needs to be

www.dbpia.co.kr

= [Tacker 7|4} NFV A|2Hle] 9529 A4 7|4k VNF ZuE]d] =

Table 1. Specification of implementation environment

Entity Details

Intel(R) Core(TM) i5-7600 CPU @
3.50GHz (4 Cores), 16GB RAM,
120GB SSD

Server hardware

Operation System Ubuntu 16.04 LTS, 64-bit

Devstack Version: stable/pike
Tacker Version: stable/pike
Mistral Version: stable/pike

on-boarded. When the VNF is

deployed, the Mistral workflow service receives

successfully

RPC request for the VNF monitoring. It validates
VNF

monitoring. The VNF monitoring action is called

and then starts the workflow task for

and the loop for monitoring is then executed.
When multiple VNFs are deployed as shown in

Figure 5-a, the Mistral workflow service also creates
multiple corresponding workflow executions as
shown in Figure 5-b. If a VNF is deleted, a

corresponding workflow execution is also removed.

IV. Conclusion

This article proposes and evaluates the workflow
policy-based VNF monitoring mechanism for
Tacker-based NFV system. The VNF monitoring
task will be processed by an external workflow
service, hence, the VNF Manager can be more
scalable and effective. The proposed model is
implemented in Tacker which is an open-source
NFV MANO in the OpenStack cloud platform. The
experiment results show that the proposed VNF

monitoring model is feasible and effective.

—
s openstack. =nfv-

Project 5

NFV / VNF Management /

Admin >

identy > VNF Manager

Warkflow N

NFV “

VNF Management v Displaying 5 items | Next »
UNF Catalog D VNFName Description

Demo example

(a)

Deployed Services vim Status
VIMD ACTIVE
VIMD ACTIVE
VIMD ACTIVE
VIMD ACTIVE
VIMD ACTIVE

NFV Orchestration > VNF2 Demo example
VNF3 Demo example
VNF4 Demo example
VNF5 Demo example
T openstack. =ni -
Project
Workflow /

Admin >

ity > Workflow Executions

Workflow v

Workbooks

Workflows Displaying 5 items

Actions o o

Task Executions

Action Executions

Cron Triggers

9

a28b-dee3-9330-
768

11-3132-43dd-9129-
75!

>

a72d58a0-43be-4329-9152-

490220

1be3d3cd-1

d7f

1ec02871cbab

Workflow

vnf id_f1f52f71-57c5-42a5-bc3e-
19bBeal8feo3

vnf_id_73f6890c-b6d0-48b3-9240-

48479096%4ea

vnf_id_6e0ca998-73ef-490-a7c0-
65a53383¢275

vnf_id_fa82fe39-0328-42d3-aelf-
T35abc174283

vnf_id_e5a39ddc-2671-4cc9-9dbb-

4a3f34126e31

(b)

Tasks Input Output Createdat Updatedat State Actions

Vew View Vi 51seconds 51seconds (DN E—
ago ago eai

Ve Vew Ve smiute amowe (N pre—
ago ago eail

. amnute amnute (D pmE—
ago ago et

Vew View Vie aminte amrute (D pr—
ago ago el

vew View vie gminutes smrues (D p—
ago ago et

Fig. 5. Multiple VNFs

are monitored by corresponding workflow executions.

1487

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’18-09 Vol.43 No.09

(1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[]

1488

References

ETSI NFV, Network function virtualisation:
An introduction, benefits, enablers, challenges
& call for action, Introductory White Paper,
Issue 1, SDN & OpenFlow World Congr.,
Darmstadt, Germany, Oct. 2012.

R. Mijumbi, et al, “Network function
virtualization: = State-of-the-art and research
challenges,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 1, pp. 236-262, 2016.

T. H. Nguyen, T. Nguyen, and M. Yoo,
“Analysis of deployment approaches for
virtual
Proc. 32nd ICOIN 2018, pp. 289-291, Chiang
Mai, Thai Lan, Jan. 2018.

C. Tipantuna and Y. Paul, “Network functions

customer premises equipment,” in

virtualization: An overview and open-source
projects,” 2017 IEEE Second Ecuador
Technical Chapters Meeting (ETCM). IEEE,
2017.

O. Sefraoui, M. Aissaoui, and M. Eleuldj,
“OpenStack: toward an open-source solution
for cloud computing,” Int. J. Comput. Appl.,
vol. 55, no. 3, 2012.

The OpenStack Foundation: OpenStack Tacker.
[Online]. Available: https://docs.openstack.org/
tackery/.

The OpenStack Foundation: OpenStack Mistral.
[Online]. Available: https://docs.openstack.org/
mistral/.

The OpenStack Foundation: DevStack. [Online].
Available: https://docs.openstack.org/devstack/.
Tacker VNF Monitoring based on Mistral [On
line]. Available: https://anda.ssu.ac.kr/tacker-m

istral/.

SHEZ|510| (Tri-Hai Nguyen)
Tri-Hai Nguyen received his
B.S. degree in computer

science from the University

of Information Technology,
Ho Chi Minh City, Vietnam,

%\\ in 2015 and M.Eng. degree
in information and
communication technology from Soongsil

University, Republic of Korea, in 2017. He is
currently pursuing the Ph.D. degree in information
and communication technology at Soongsil
University, Seoul, Republic of Korea. His research
focuses on network function virtualization and

cloud computing.

7 ¥ Al (Myungsik Yoo)

Myungsik Yoo received his
B.S. and M.S. degrees in
from

electrical ~ engineering

Korea Seoul,
Republic of Korea, in 1989
and 1991, and his Ph.D. in

from

University,

electrical
State University of New York at Buffalo, New
York, USA in 2000. He was a senior research
engineer at Nokia Research Center, Burlington,

engineering

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research
interests include visible light communications,
sensor networks, Internet protocols, control, and

management issues.

www.dbpia.co.kr

	Workflow Policy-Based VNF Monitoring Model in Tacker-Based NFV System
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. A Workflow Policy-Based VNF Monitoring Model
	Ⅲ. Experiment
	Ⅳ. Conclusion
	References

