DEBEris

= 19-44-04-15 The Journal of Korean Institute of Communications and Information Sciences *19-04 Vol.44 No.04
https://doi.org/10.7840/kics.2019.44.4.728

NFV 7] el 2] A7 Y| ESIT An]X w3
aA 2

_“

3. 31 X . 3
G FFF, A A

Design and Implementation of Policy based Network Service
Placement on NFV Infrastructure

Cong-Phuoc Hoang®, Young-han Kim’

fo
2

NFV (network function virtualization) 7|59} &}ol|4] NS(network service) wix]oll #glF A% Q74 U ELH =
ARl YT e S ARSete] AAtA ok ey olzidh W UESZ o] Au|2E 87t NFV |
Zet 5] ok 5o HAOoR wiAr) g & Qlrh B el ol wAlE ddsle e
TOSCA 7[Hkie]E A3k A 31El mj APy o224 A7) qu ZH U ZE Ak A”KE B vES =
ze} -z, THEY 5 2 Au|ad 872 ES BT aEsle] HASE wiAE rlseiA & & 9]‘:]' L
E422 MANO AZESJo]E AM83Ste] Algkel A7t ZH U935 78I VNFO] 875 A 278 1t
F3HA 2522 NSE xS = 9l8-S Ryirk

Key Words : NFV, Orchestration, TOSCA, Network Service, Policy Management

ABSTRACT

In the Network Function Virtualization (NFV) environment, the placement requirements for network services
can be specified manually by using network service descriptors. But its not usually optimal because of
constituent virtual network functions with service-specific requirements and variant capabilities of NFV
infrastructures (NFVIs). In order to solve the above issue, in this paper, a policy framework is proposed for
automating network service deployment by using TOSCA specification language. The proposed policy framework
could support the optimized placement by considering all of the network infrastructure, the platform capabilities,
and the service specific constraints. Using an open source MANO (management and orchestration) software, the
proposed policy framework is implemented and shows that it could place the NS automatically while meets the

required specific constraints of VNFs (virtual network functions).

I. Introduction technology, the virtual network functions (VNFs)
can be easily deployed on virtual machines or

With the network function virtualization (NFV)!" containers by decoupling the network functions from

% This research was supported by the MSIT(Ministry of Science, ICT), Korea, under the ITRC(Information Technology Research Center)
support program (IITP-2019-2017-0-01633) supervised by the IITP(Institute for Information & communications Technology Promotion)

¢ First Author : Soongsil Univ. Dep. of Electronic Engineering, phuoc.hc @dcn.ssu.ac.kr, 33|

Corresponding Author : Soongsil Univ. Dep. of Electronic Engineering, younghak@ssu.ac.kr, %4131

= E 1 201812-389-D-RN, Received December 17, 2018; Revised February 14, 2019; Accepted February 15, 2019

128

www.dbpia.co.kr

= /NFV 7]

HHEHA ol A o] A7 B S An| 2 A Al 2 7

the dedicated hardware appliances. Instead of
implementing network functions, such as router, load
balancer, and firewall etc., on some special hardware
systems, they can be located on any general-purpose
compute hardware or on the shared resource
environment, i.e. the cloud platform, so that the
operational expenditure (OPEX) and the -capital
expenditure (CAPEX) could be reduced. The VNFs
can be interconnected to make network
services(NSs) and the automated deployment and
provision systems for the NS across data centers are
becoming important to overcome the operational
complexity and overhead increased by replacing the
legacy physical network devices.

The NFV management and orchestration (MANO)
system automates the deployment of network
services over NFVIs (NFV infrastructures).
Nowadays, most of the MANO systems support this
deployment of VNFs and NSs using descriptors such
as VNF descriptor (VNFD), VNF forwarding graph
descriptor (VNFFGD) and NS descriptor (NSD) for
specifying the requirements of each component.
These descriptors are usually composed by the
TOSCA (topology and orchestration specification for
cloud applications)[z] which is a standard language
for specifying the topology of cloud based services.
By using service descriptors, network operators and
consumers can define their own services and
requirements (i.e., placement attributes like affinity
or anti-affinity constraints of VNFs, availability
zone, region constraints, and quality of service for
VNFs and NSs.). The MANO systems extract the
service-specific attributes from the service descriptor
and then manage and orchestrate the network service
using these attributes.

Although the MANO system can manage the
network functions with these descriptors, it is also
expected to support the advanced features such as
the quality of service (QoS) and SLAs (e.g.
bandwidth, latency, high availability, etc.) that can
be realized with predefined semantics of the
descriptors such as the hardware capability and the
vendor specific VNF features which affect the
performance of network service. As described in B

network operators can reuse the same VNFDs to

create their own network services. However, with
different network service’s requirements, VNFD’s
properties are also required to be updated. Therefore
the solution for resolving the conflicts between
VNFD and NSD is required. In the telecom
networks, these capabilities are usually come from
the policy management function with which the
VNFs of a NS is properly placed on the infra
system to meet the QoS and SLAs depending on
runtime conditions of environment.

The policy management in MANO has been
addressed by ETSI GS NFV-MAN 001" and GR
NFV-IFA 023", But these reports only provide the
high-level use cases and the operation way in the
NFV based networks, and the detailed information
about the policy integration into NFV MANO
system are not included. In the previous researches
about the policy management, [5] provides several
use cases of policy in MANO architecture, but no
real work flows were studied. Bari et al. [6] also
proposed an autonomic QoS policy enforcement
framework for software defined networks by
specifying service level agreements, and Alexander
et al.”” extended the TOSCA for policy description.
However, these works only cover the framework but
not mention the ways to implement the policies with
MANO. In [8], the authors proposed the security
policies to manage the virtual security functions to
support the policy-based actions in 5G network, but
the detail policies were not presented with real
experiments.

In this paper, we propose a policy framework in
NFV MANO system to automate the NS placement
over multiple virtual infrastructures while satisfying
the required service requirements. The proposed
framework has the following features:

use the standard TOSCA specification language to
describe the placement policy rules

automatically process the policy in run time
environment

resolve the conflicts between the NS and the VNF
level policies.

After the introduction, in section II, we describe
the extension of the TOSCA template to support the

729

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’19-04 Vol.44 No.04

placement policies. The detailed design and
implementation of the policy framework are
described in section III and IV. In section V, we

conclude our work.
II. Design of the Policy Template

In TOSCA, the standard definition of policy is
shown as in Figure 1 which includes the properties
of a policy, it’s relation to other policies, and the
applicable target node types. In this work, we design
the new policy types for VNF and NS, which
include placement and QoS-aware placement,
according to this standard format.

In Figure 2, the placement policy template is
shown, it tends to determine the placement of VNFs
of a network service with specific values, in which
values are designed to enable the deployment of
VNF’s resources in specified locations. Placement
policy allows network operators to specify host,
availability zone, region with special rules, such as
affinity or anti-affinity directly in policy template, or
service’s requirements. For instance, in
“NS_placement_policy” policy, users can specify
which data centers VNFs can be located on with
values of “data_centers” field.
“NS_placement_policy” policy also let users define
how VNFs are distributed on these data centers by
setting “placement_strategy” value
(“load_balancing”, “round_robin”, “random”, etc.).
Depend on values of properties in placement policy
and monitoring metrics, the placement of VNF will
be automatically determined in real time
environment.

Figure 3 gives an example of QoS-aware

placement policy, that assure performance of a

<policy_type_name>:
derived from: <parent policy type name>
varsion: <version_number>
metadata:
<map of string>
description: <policy_description>

properties:

<property definitions>
targets: [<list of valid target typea>]
triggers:

<list_of trigger definitiona>
Fig. 1. TOSCA definition of policy

730

template_versicn:
policiss:

- VNF_placement_policy:
type: tosca
description
propertiss:
anti=affinity: true
data_senters: [city_regionl]
targets: [VNF1, VNF2)

* F

- W5_placement_policy:
typs: tosca

description: 1

properties:
data_centers: [ci
placement_strateg
placement type: la.

targets: [N NS2

) |

Fig. 2. TOSCA policy in YAML for placement policy

template version:
policies:

- H5_performance_peolicy:
type: tosca.nfv.polici
description: £
proparties:

min_bandwidth:
delay: msa
targets: |

Fig. 3. TOSCA policy in YAML for QoS-aware
placement policy

network services to satisfy user requirements.
Because network services is not real object that can
be deployed on infrastructure as VNFs, so QoS
requirements must be translated into VNF placement
decisions. To achieve QoS requirements, policy
framework have to determine sufficient resources
VNFs need to be provisioned and then figure out
proper data center, availability zone or even host to
place VNFs. In our work, we use a key performance
indicator (KPI) functional block to determine
sufficient resources for VNFs and then VNFD
templates are tailored accordingly to NS-specific
requirements. QoS-aware placement policy is useful
when VNFD templates can be reused for each NS
deployment. Rather than modifying VNFD templates
manually to support each NS requirement, network
operators only need to use different QoS-aware
placement policy and original VNFD templates are
automatically modified to meet requirements. To
solve the conflicts between the NS and the VNF
level policies, the framework uses global and local
policies architecture to apply managing policies into
MANO system. The network service level policies
are global policies which have broader scope and
higher priority than the local policies, so that they
will affect the subsystem policies applying on VNFs.
As shown in the Fig. 4, the global policy defines the

requirements for the network service NS1 with the

www.dbpia.co.kr

=/ NFV 7[Rk ol 4] o] A A7ME V2= Au] 2~ w2 A 2 74

W51 supports throughput rate of SGbps and delay of 200 ms

Compute wbiystemn Network subsystem Storage subsystem UNE spaciication

Palicy Translation: Folicy Transiation: Folicy Transtation: Folicy Translation:
Mtach ? Dotk storage with Alfinity

VNI 0n VWIS with & points with Qo value S50 1ype.

VEPU, B GB RAM, s 5Gbps,

Fig. 4. Example for global and local policies

through put rate of 5Gbps and the end-to-end delay
of 200ms. Then the policy framework processes
this requirement to calculate the proper properties
for VNFs. If the pre-defined values of VNF’s
properties could not meet the requirements for
network service, they should be replaced by new

values to solve the conflicts.
I. Design of the Placement Framework

High-level architecture of policy framework is
shown in Fig. 5. Inputs of this framework are
network service templates with placement policies
enabled and resource’s usage of infrastructures. The
output of policy framework is the placement
decisions for VNFs. The placement decisions are
translated into specific values of VNF configuration
in output templates, which are used to deploy VNFs
on destination infrastructure properly, to satisfy the
network service requirements. To support making
placement decisions, which depends on run time
conditions of infrastructures, framework
continuously gathers monitoring metrics of
consumed resources such as CPU utilization,
memory usage, network bandwidth, etc. using
monitoring tools.

Policy framework is based on six key components

and VIM’s APIs. In our case, we used OpenStack

14) Action trigger

Policy
Framework

2} Action
(1) NSD, Poiic
notification (1) HS0, Policy,

wm f WHID

[E51] ——
Moritaring '
data

5
Control

NFV Infrastructure _

Fig. 5. Framework high level architecture

APIs such as Nova and Ceilometer APIs to know
about hypervisor information of underlying
infrastructures. The detailed functional components
of policy framework are shown in Figure 6, which
includes:

1) Monitoring module: it is used to monitor
pre-defined metrics of allocated resources and NFV
infrastructures. It then regularly pushes monitoring
metrics to policy engine with necessary information
to support making efficient VNF placement
decisions.

2) Policy handler: Policies can be created from
OSS/BSS or directly from users. Policy handler is a
hub for retrieving policies. It is in charge of
parsering policies, collecting monitoring information
and then it pushes them to policy engine.

3) Policy engine: Policy engine is in charge of
evaluating of polices and it uses metrics and
monitoring statistics to determine placement
decisions of VNFs based on KPI to achieve network
service’s QoS requirements.

4) Policy validator: This module bases on the
native TOSCA parser'gl to interprets the user request
(with TOSCA template) and verifies the request
correctness.

5) Enforcer: It is responsible for translating
VNF’s placement decisions, which are results of
Policy engine, into appropriate values in VNF
template. Enforcer tends to support various cloud
orchestrator such as OpenStack Heat, AWS
CloudFormation, etc.

6) KPI: Key performance indicator (KPI) defines
a set of key-value, that match requirement to a

specific value for each resource in infrastructure. For

Policy Management Framework

Policy templates. |
(NS eatonsion)

Fig. 6. Policy framework components

731

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’19-04 Vol.44 No.04

instance, requirement for low latency, high packet
throughput, low jitter constraints of a VNF can be
fulfilled by a kind of flavor in OpenStack
environment. The appropriate resource types and
resource configuration of VNF descriptor must be
evaluated according to KPI in order to reach
network service’s QoS requirements.

The Figure 7 illustrates the sequence diagram of
creating network service in MANO system with
policy framework extension. Before NFVO send
requests to VNFM for launching VNFs using VNFD
templates, firstly configuration values of VNFD
template will be processed in policy framework to
determine optimal placement to satisfy requirements
from NSD and policies templates. Policy framework
collects consumed resources from virtual
infrastructures by interacting with virtual
infrastructure managements (VIMs) and monitoring
tool such as Ceilometer and Nova compute in
OpenStack cloud platform.

After collecting infrastructure data, policy
framework uses predefined data in KPI component
to automatically figure out proper configurations for
VNF’s placement. For example, to achieve
throughput rate of 5Gbps, compute resource of
VNFs must be 4 vCPU, 8 GB RAM and 5 Gbps
throughput bandwidth for network card interface.
Policy framework then updates configuration values
to VNFD templates and send them back to NFVO.
To the end, NFVO does normal procedures by

o ey i

Sernd anching st 10
Bai.

. TSP SySpp——

Fig. 7. The procedure for creating network service

132

passing new updated VNFD templates to VNFM to
launch new VNFs.

IV. Implementation and Experiments

In this paper, we develop a prototype of policy
framework using open source projects (Tacker o
and Tricircle ") and we also evaluate proposed
framework with VNF placement scenarios. We
consider Tacker project for NFVO and VNFM
functional blocks to manage and orchestrate network
services. OpenStack is used as VIMs for managing
virtual infrastructures. Figure 8 describes applying
policy framework into Tacker MANO system. New
functional blocks of policy framework are policy
handler, policy validator, policy engine and policy
enforcer, while monitoring module just is invoked
existing infrastructure APIs. Managing multiple
virtual infrastructure is also important, we also use
the Tricircle project to provide unified control plane
view for multi-region OpenStack deployments in our
experiment environment. The framework utilize
VNFDs, NSDs, policies template from NFV catalogs
to determine placement of VNFs on OpenStack
VIMs.

Table 1 shows the details environment’s

specification. We customized the Tacker source code

APL
‘ (WsGl, extension/plugin framework) l

i |

NFV Catalogs

TOSCA

w 1
1 - i VNF temglate
r NSD I VNFEGD 4 v validation

NFVO
Policy Management Framework VNFW

o] Pa TOSCA
i —
Pol ,

- Maonitoring
E== o

Framework

)

| Network | Gather

| semice | manitoring
|__Instances | statistics. S

VIMs (with Tricircle supported) |

Openstack S)] Openstack
ra < () 7 ~
) E -)
-)
- =)
~— E*JFE E"'JE*’E

Fig. 8. Implementation of Policy Framework in MANO
system

www.dbpia.co.kr

=/ NFV 7[Rk ol 4] o] A A7ME V2= Au] 2~ w2 A 2 74

Table 1. Specifications of the experiment.

Entity Details

Intel(R) Core(TM) i5-7600 CPU
@ 3.50GHz (4 Cores), 16GB
RAM, 120GB SSD

Operation System | Ubuntu server 16.04 LTS, 64-bit

Server hardware

Tacker Version: Master
Tricircle Version: Master
Devstack Version: Master

to support policy framework. For simulating three

[12] to

data centers, we deployed DevStack tool
create OpenStack environments on three hardware
servers. In Fig. 9, the dash board of the
implementation shows the applied policy framework
deployed automatically the VNFs of a network
service on multiple VIMs as user’s requirements.
With the policy framework, we could calculate the
real-time resource usage and user’s requirement to
assign the VNFs on proper VIM from multiple
VIMs. In the experiment, the overall NS provision
time is measured as shown in Fig. 10. The overall
NS provision time is composed of the mapping time
and the instantiation time. The mapping time is the
sum of the policies’s mapping time and the time

required to collect the monitoring metrics in real

Déoemtack =

WNF Manager

Fig. 9. Multiple VNFs of a NS are deployed
automatically on VIMs by policy framework executions

TTemon Fegons I Regions

BLGopme e BInoioonTme

time conditions. And, the VNF instantiation time is
for the parsing information from the VNFD, the
generation of the HEAT template, and to send the
request from Tacker VNFM functional block to the
OpenStack Heat service to instantiation the VMs in
the NFVIL. The figure shows that the mapping time
is minor compared to the instantiation time.

In the second experiment, the internal work flow
of the proposed policy framework is investigated.
There are two kind of templates, the TOSCA
network service template for network operators to
describe their service with requirements and the
other template is the output of Tacker with policy
framework enabled, which is used to launch the
necessary resources of network services. Figure 11
shows a sample of input network service template
with policy using TOSCA standard with the QoS
requirement. The VNFDs can be reused in many
NSDs, so that the values of hardware resources are
not defined in VNFD template and usually be
specified later depends on the virtual infrastructure
used. In some cases, the network service requires to
have a specific performance, so we improved the
VNF’s description by adding the QoS resource’s
definition based on each NS’ requirements that are
not supported in the Heat-translator. As an example,

if a NS requires a lower end-to-end delay time, the

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_@
description: VNF TOSCA template with input parameters

metadata:
template_name: sample-tosca-wnfd

topology_template:
node_templates:
VDU1:
type: tosca.nodes.nfv.VDU.Tacker
capabilities:
nfv_compute:
properties:
num_cpus: { get_input: num_cpus }
mem_size: { get_input: mem_size }
disk_size: { get_input: disk_size
properties:
image: cirros-@.3.5-x86_64-disk
availability zone: { get_input: availability zone }
mgmt_driver: noop

1
5

policies:
- NS_performance_policy:
policy_types:
tosca.nfv.policies.performance.NS:

description: The performance policy for Network Service
derived_from: tosca.policies.Performance

properties:

max_bandwidth: 2000 Kbps

Fig. 10. Mapping and instantiation time for multiple NS
instantiation

Fig. 11. TOSCA network service template with
performance policy

733

www.dbpia.co.kr

The Journal of Korean Institute of Communications and Information Sciences ’19-04 Vol.44 No.04

VNFs could be placed on the same VIM, and
affinity rules need be added to the HOT(Heat
Orchestration Template) template to place the VNFs
on same hardware. We use the OpenStack as a VIM
for managing virtual infrastructure, so the HOT
template, which is described in Figure 12, will be
generated as the output of Tacker. The HOT

31 to create the

template will be used by Heat
necessary resources for network service. In this
work, a new “qos_policy” for Neutron port is
added in the HOT template to support the
throughput requirement. The flavor’s configuration
parameters of VDU1 are also updated to support the
minimum requirements of QoS as shown in the

figure 12.

heat_template_version: 2017-02-24
description: 'VNF TOSCA template with input parameters”®
parameters: {}
resources:
CP1:
type: 0S::Neutron::Port
properties: {port_security_enabled: false, network: net@}
VDUL:
type: 0S::Nova::Server
properties:
user_data_format: SOFTWARE_CONFIG
availability zone: nova
image: cirros-0.3.5-x86_64-disk
flavor: {get_resource: VDU1_flavor}
networks:
- port: {get_resource: CP1}
config_drive: false
VDU1_flavor:
properties: {disk: 1, ram: 512, vcpus: 1}
type: 0S::Nova::Flavor
VL1:
type: 0S::Neutron::Net
properties:
name: net®@
qos_policy: { get resource: gos policy }
qos_policy:
type: 0S::Neutron::QoSPolicy
bandwidth limit rule:
type: 0S::Neutron::QoSBandwidthLimitRule
properties:
policy: { get_resource: qos_policy }
max_kbps: 2000
max_burst_kbps: 2000

Fig. 12. Resulting HOT template

V. Conclusion

In this work, we presented the components of
policy framework to determine network service
placement decisions over multi-clouds, in which
VNF’s specification can be determined automatically
rather than network operators specify them
manually. We also depict how to use TOSCA
language to declare non-functional requirements by

134

using policies (placement and QoS-aware placement)
for NFV and cloud services. To the end, the
implementation is presented by extending current
Tacker MANO system and experiment results show
use cases of applying policies that affect
performance of network services. The proposed
framework could be wused to place the NS
automatically while meets the required specific
constraints of VNFs.

References

[1] ETSI NFV, Network function virtualisation:
An introduction, benefits, enablers, challenges
& call for action, Introductory White Paper,
Issue 1, SDN & OpenFlow World Congr.,
Darmstadt, Germany, Oct. 2012.

[2]1 Topology and Orchestration Specification for
Cloud Applications, Version 1.0, OASIS
Standard TOSCA-v1.0, 2013.

[3] ETSI GS NFV-MAN 001, NFV Management
& Orchestration. [Online], Available: https://ww
w.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/
001/01.01.01_60/gs_NFV-MANO001v010101p.p
df

[4] ETSI GR NFV-IFA 023, Report on Policy
Management in MANO, [Online]. Available:
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/O
01_099/023/03.01.01_60/gr_NFV-IFA023v030
101p.pdf

[51 R. Szabo, S. Lee, and N. Figueira,
Policy-Based Resource Management, RFC
Editor, draft-irtf-nfvrg-policy-based-resource-
management-02

[6] M. F. Bari, S. R. Chowdhury, R. Ahmed, and
R. Boutaba, “PolicyCop: An autonomic QoS
policy enforcement framework for software
defined networks,” in Proc. IEEE SDN Future
Network Services (SDN4FNS), pp. 1-7,
Trento, Italy, Nov. 2013.

[71 K, Alexander, C. Lee, E. Kim, and S. Helal,
“Enabling end-to-end orchestration of
multi-cloud applications,” IEEE Access, vol. 5,
pp. 18862-18875, Aug. 2017.

[81 M. S. Siddiqui, et al, “Policy based

www.dbpia.co.kr

= /NFV 7[HEsH ol 8] A A7HE v ES =

Aulz w2 A g

virtualised security architecture for SDN/NFV
enabled 5G access networks,” 2016 IEEE
Conf. Network Function Virtualization and
Software Defined Networks (NFV-SDN), pp.
44-49, Palo Alto, CA, USA, 2016.

[91 Tosca Parser, [Online]. Available: https://wiki.
openstack.org/wiki/TOSCA-Parser

[10] Tacker, [Online]. Available: https://wiki.open-
stack.org/wiki/Tacker

[11] Tricircle, [Online]. Available: https://wiki.open
- stack.org/wiki/Tricircle

[12] DevStack, [Online]. Available: https://docs.ope
nstack.org/devstack

[13] Heat, [Online]. Available: https://wiki.openstac
k.org/wiki/Heat

[14] Kubernetes, [Online]. Available: https://kubern

etes.io/

= F 29 (Cong-Phuoc Hoang)

20154 9Y @ Slxo|HElr|E
ek AxgAalE) skt
20179 34 ~3A) : A
AR FAFET A
<¥AlRol> SDN/NEV, S2h§-
= ZAFE, 2A~EdelA

[ORCID:0000-0002-3507-5702]

m

21
=

A & (Young-han Kim)
19861

1990

1994 3~&A) : A st

AR BB

29 144
A7) 9 A3 Fjst A4t
24 |4
A7) 9 A et up

<FA] ol muld VEYZ, ox] FEe= A~

9, ICN 2 A =97, FRhes 25
[ORCID:0000-0002-1066-4818]

www.dbpia.co.kr

735

	Design and Implementation of Policy based Network Service Placement on NFV Infrastructure
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Design of the Policy Template
	Ⅲ. Design of the Placement Framework
	Ⅳ. Implementation and Experiments
	Ⅴ. Conclusion
	References

