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요   약

차량 대 차량(V2V) 통신은 지리적 위치, 제동 정보, 속도, 회전 신호 상태 및 주행 방향 등 다양한 안전메시지

를 송수신한다. 안전메세지 전송을 위한 통신 프로토콜은 전용단거리통신(DSRC)이며, DSRC는 통신범위 제한으로 

다중 홉을 이용하여 차량에 메시지를 전송한다. 본 논문은 V2V로 구성한 네트워크에서 기계학습을 이용하여 다중 

홉 연결 커버리지를 확장하는 방법을 제안한다. 먼저 심층콘볼루션신경망(DCNN)을 이용하여 다양한 환경으로 구

성된 V2V 네트워크의 무선채널을 학습하고 각 환경에 적합한 전파 모델을 이용한다. 무선채널을 세분화한 후 Q-

러닝을 이용하여 전파 손실이 가장 적은 최적의 다중 홉 경로를 찾음으로써 V2V 안전메세지 전송 커버리지를 확

장한다. 
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ABSTRACT

One of the most critical challenge in a vehicle-to-vehicle (V2V) scenario is the transmission safety messages 

(BSMs) e.g., geographical location, braking information, speed, the status of the turn signal, and direction of 

travel. The protocol adopted to transmit BSMs in V2V is refered as Dedicated Short-Range Communications 

(DSRC). The limited communication range of DSRC have shown that is necessary to employ a multi-hop 

communication strategy to reach as many target vehicles as possible. In this paper, we overcome the coverage 

limitation of multi-hop connectivity in V2V networks and propose a methodology consisting of two machine 

learning (ML) tasks. First, two deep convolutional neural networks (DCNN) are created and tuned to segment 

terrestrial imagery into different environments. The multi-environments are anticipated to have different 

propagation models. The second part uses a Q-learning algorithm to find the optimal multi-hop path with the 

lowest propagation loss, based on the results of the environment segmentation. The optimal multi-hop link is 

simulated and compared with a direct link transmission, showing that our proposal can extend the coverage of 

multi-hop wireless links by transmitting the BSMs via the optimum path.
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Ⅰ. Introduction

A real V2V communication scenario constitutes a 

wireless network where automobiles exchange 

information about their status. This standardized 

communication data, also known as BSM, include 

geographical location, speed, the direction of travel, 

etc. V2V technology generally adopts DSRC, a 

specifically designed wireless communications 

channel and its corresponding set of protocols and 

standards for automotive use
[1,2]. However, since the 

range of DSRC is limited to a few hundred of 

meters, it is necessary to employ a multi-hop 

communication to extend the range of 

communication. Under this setting, the vehicles will 

act as message relays in order to a given destination, 

and eventually reach as many targets as possible
[3]. 

In the U.S., the IEEE 1609 WAVE Wireless Access 

in Vehicular Environments protocol stack builds on 

IEEE 802.11p WLAN operating on seven reserved 

channels in the 5.9 GHz frequency band. Research 

in VANETs started as early as 2000, in universities 

and research labs, having evolved from researchers 

working on wireless ad hoc networks
[4,5]. Many 

researchers have focused on media access protocols, 

routing, warning message dissemination, and 

VANET application scenarios, but there is a lack of 

literature on the application of ML algorithms to 

solve propagation problems on vehicular networks.

In this paper, we propose to:

•Build and train a semantic segmentation 

network to create a categorical matrix based on 

an aerial imagery from the location of the 

vehicles.

•Set the transmitting vehicle as the agent and 

the segmented aerial image as the environment, 

to be able to train a model-free RL algorithm 

capable of finding the optimal path among the 

vehicles that minimizes the path loss in the 

wireless link.

•Simulate the scenario under a V2V channel 

and compare the dissemination of a wireless 

signal using our proposal, and a direct link 

transmission. 

Ⅱ. Proposed Methodology

The proposed methodology consists in two ML 

tasks, the first is creating and tuning two deep 

convolutional neural networks (DCNN) to segment 

the terrestrial environment into sub-environments 

(urban, suburban, and rural), with different 

propagation models. The second part is the 

application of a reinforcement-learning algorithm to 

find the path with the lowest propagation loss, in 

order to establish the multi-hop link.

2.1 Semantic Segmentation with DCNNs
With the popularity of deep learning in recent 

years, many problems in the field of wireless 

communications are being tackled using artificial 

intelligence and DCNN architectures
[6,7]. In our 

problem, even though a free-space propagation 

model could be used, in a real-world scenario we 

find obstructions like buildings or trees. We employ 

a semantic segmentation network to find where 

these obstructions are positioned and solve the scene 

understanding problem. Figure 1 shows at a 

high-level a semantic segmentation network on top, 

where the output matches every pixel in the image 

with one of our classes (i.e., open field, buildings, 

and street). The DCNN takes the input image 

through several processes (i.e. convolution, batch 

normalization, image down-sampling, ReLu 

activation, etc), and repeat them until the last layer 

computation. The first pre-trained network is 

followed by an up-sampling network, with a reverse 

architecture of a normal DCNN, where the series of 

new layers up-sample the results of the first 

pre-trained network back into an image
[8]. As a 

result, the input is an image and the result is the 

image with every pixel labelled with a pre-set class. 

Pairs of images with their corresponding labels are 

given to the algorithm during the initial learning 

process, and once the segmentation network has 

learned the features, the network will automatically 

do the inference on any new input image. Our 

semantic segmentation network parameters initialize 

using the weights of the VGG16 architecture with 

an encoder-decoder framework, dropping the fully 
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Fig. 1. An illustration of the RL algorithm, showing the 
agent taking an action   on the environment, and 

receiving a new state    , and a reward   .

connected layers of the network[9]. The decoder 

sub-network is constitutes as mirror copy of the 

encoder sub-network.

2.2 The Reinforcement Learning Task 
At a high level, our reinforcement learning 

routine  comprises two main parts, an agent, and the 

environment (i.e., the categorical matrix generated 

by our DCNN in Section II.A). Figure 1 illustrates 

how the agent starts by taking an action  on the 

environment and receives a reward    for every 

time step  
[10]. 

The value of the reward    can be positive or 

negative (interpreted as a penalty). The action of the 

agent is taken based on some policy  , that is 

   . Our final goal is to find the policy 

that maximizes the cumulative reward 




 over a 

finite number of iterations  . The agent will take 

a deterministic policy, in other words, the agent will 

observe the state of the system and then it will 

choose an action. The RL problem can be 

mathematically represented as a Markov Decision 

Process (MDP), consisting on a finite set of states 

 , a set of allowable actions  for each ∈ . 

A transition function   ×→ , and a 

reward function   ×→ℛ . We define the 

policy as   ×→ , and denote  as the 

reward in time  . Therefore, the objective will be to 

learn the policy that maximizes the cumulative 

reward     , where 

∈  represents a discount factor, in order to 

make the sum converge. To evaluate the quality of 

our policy  , a value function   →ℛ  assigns 

a real value to each of the states, as follows:

   
  

∞

 (1)

where the state at time  , is generated from the state 

at time   , by applying the action according to 

the policy   . Our problem will be solved 

when the algorithm finds an optimal policy that 

satisfies the condition in (2).

 


   ∈ 
  




(2)

Our agent can take four different transmitting 

actions, we write it as 

∈   . In Fig. 1, the 

agent vehicle   will receive the highest reward if 

it transmits through a street, since the propagation 

loss experienced in   is the lowest. If  transmits 

through an open field (e.g., large parks, or areas that 

might include vegetation), the agent will also receive 

a reward, but the value will be lower than the 

previous case. On the contrary, if decides to 
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(a)

(b)

Fig. 2. The multi-hop problem solved as a maze game 
with Q-learning. (a) A map showing the start point  and 
the goal , where  represents a location area to be evaded 
due to high propagation losses. (b) The solved maze, with 
the optimal multi-hop path solution. 

transmit across buildings, where the propagation loss 

is the highest, the agent will receive a negative 

reward. The propagation loss can be a sum of 

sub-propagation estimations, for instance Fig. 1 

illustrates the transmission between   and  , 

where the propagation will be estimated as  the sum 

of the propagation in the classes 

street-buildings-street  . In the same manner, 

  in Fig. 1 indicates a propagation across the 

evironments street-openfield-street.  

The proposed algorithm converges to the optimal 

value   , and policy   provided that ∈ . 
Expressing the values in terms of Q-functions, the 

value of the policy   that starts in the state   and 

takes an action , is defined as    ×→ℛ . 

For an optimal policy  , the definition represented 

in (3)-(4) needs to be satisfied.

     


 (3)

 


 
 (4)

Since the transition and reward functions are not 

assumed to be known in advance, the agent will be 

the learner, whose task is to maximize its rewards. 

Ⅲ. Simulation Results and Discussion

The semantic segmentation network was fed using 

a dataset that accounts for aerial images from 

different locations on different cities
[11]. To simulate 

the received power, we have gathered a dataset 

containing the received signal strength (RSSI) from 

a V2V scenario
[12]. From each location, we have 

segmented an aerial image and set the value  of the 

reinforcement-learning algorithm to 1 to streets, 0 

for the open areas, and -1 for buildings. The 

problem now can be solved as a maze problem, and 

the optimal path can be found with a relative low 

computational complexity.

As an illustration, Fig. 2-(a) shows the results of 

the categorical matrix reduced to a 12×12 pixel 

area. The black squares with an “x” represents the 

buildings our algorithm should avoid. The grey 

squares represents the rewards ≥0. Figure 2-(b) 

shows the results of the optimal path for the 

transmission. We assume the transmitting vehicle is 

located in the top-left of the maze, and the location 

of the goal to be the square in the bottom right 

corner. 

Figure 3 shows the results of out MATLAB 

simulation. We can notice that while the wireless 

link is lost at 300m when the multi-hop path is not 

optimal, the optimal path connectivity is not 

compromised on distances above 500m. 

Furthermore, the received power for the vehicles on 

the optimal path is higher than for the vehicles in a 
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Fig. 3. RSSI comparison between direct link and 
proposed method. 

sub-optimal route. Since the multi-propagation 

model is based on the propagation scenarios from 

the Okumura-Hata model
[13], this research work can 

be extended to map-based and stochastic channel 

and propagation models, multi-hop routing, path 

planning, etc.

Ⅳ. Conclusions and Future Work

A combination of two ML algorithm has been 

developed to enhance transportation researchers and 

analysts to study BSM data transmission by creating 

multi-hop links within the path that presents the 

lowest propagation loss and lowest energy 

consumption. We have used two DCNNs to create a 

semantic segmentation network that will feed the 

Q-learning algorithm with the specific value function 

according to the environment of the specific 

terrestrial location. The methodology presented is 

discussed for the V2V scenario, but it can be used 

in additional applications such as device-to-device 

(D2D), relay nodes communication, nomadic node 

links, etc. The proposed solution has the potential to 

enhance the reliability of the link in 

vehicle-to-everything (V2X) communications, and 

the RL technology can be further studied to improve 

multi-hop network routing, or path planning.
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