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ABSTRACT

Recently, the authors of this letter introduced a

novel channel, namely additive correlated Gaussian

noise (ACGN) channel, in non-orthogonal multiple

access (NOMA) with correlated information sources

(CIS), and derived the achievable rate of such

channels. However, the rigorous proof for the

achievability is still missing. Therefore, in this letter,

we prove the random channel coding theorem for the

channel capacity of an ACGN channel.
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Ⅰ. Introduction

In non-orthogonal multiple access (NOMA),

information sources are usually assumed to be

independent, i.e., independent information sources

(IIS)[1-6]. Sometimes, however, the common

information needs to be transmitted. For example,

many mobile game users are enjoying together the

mobile interactive game, in the same cell of 5G

networks, where some users are near the base station

and the others are far from the base station. Then

the most of data is common to the users. Such data

can be modeled as correlated information sources

(CIS). Recently, the authors of this letter derived the

achievable data rate for CIS[7]. However, the

rigorous proof for the achievability is still missing.

Therefore, in this letter, we prove the random

channel coding theorem for achievable data rate of

an ACGN channel.

Notation: The superscript ∗ stands for the

complex conjugate. [ ]×E denotes the expectation.

2( , )CN m s represents the distribution of

circularly-symmetric complex Gaussian (CSCG)

random variable (RV) with mean m and variance

2s .

Ⅱ. System and Channel Model 

In a downlink NOMA system, all users are

assumed to be experiencing block fading, in a

narrow band. A base station and M users are

within the cell. The complex channel coefficient

between the mth user and the base station is denoted

by mh . The channels are sorted as 1 Mh h³ ³K .

The base station transmits the superimposed signal

1 b==åM
m m A mx P s , where ms is the message

for the mth user, mb is the power allocation

coefficient for CIS (we use am for IIS), with

1 1b= =åM
m m , and AP is the total allocated power.

The power of the message ms for the mth user is

normalized as unit power, denoted by

2*
, 1m m m m ms s sé ùé ù= = =ê úê úë û ë ûr E� E , , 1m m M" £ £ .

The correlation coefficient between the ith user and

the jth user is denoted by
*

,i j i js sé ù= ê úë ûr E , with

{ } ),Re [0,1r Îi j , , , , 1 ,i j i j i j M" ¹ £ £ . Due to

the correlation, the power of the superimposed

signal x is larger than AP . Thus, given the

constant total transmitted power P at the base

station, AP is effectively scaled down

,
1 1

.
= =

æ ö÷ç ÷ç =÷ç ÷ç ÷è ø
åå
M M

A i j i j
i j

P ρ β β P (1)

The observation at the mth user is given by

,m m my h x n= + (2)
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where mn is the additive white Gaussian noise

(AWGN) at the mth user,
2~ (0, )mn CN s .

Ⅲ. Brief Review of Achievable Data Rate 
for NOMA with IIS and CIS

In this section, we present the achievable rates for

the real channels, which is decomposed from the

complex channel. Consider 2-user NOMA. The

well-known achievable data rate for IIS of the mth

user in the conventional SIC NOMA system is

expressed by

2 2
(SIC; IIS) 1 1

21, 2

2 2
(SIC; IIS) 2

22, 2 2
2 1

1 log ,
2 / 2

/ 21 log .
2 / 2

æ ö+ ÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
æ ö+ ÷ç ÷ç= ÷ç ÷ç ÷÷ç +è ø

r

r

h Pα σ
R

σ

h P σ
R

h Pα σ

(3)

Then, the achievable data rate for CIS of the mth

user in the conventional SIC NOMA system is

expressed by [7]

( )

( )

22 2
1 1 1,2(SIC; CIS)

21, 2

2 2
(SIC; CIS) 2

22, 22 2
2 1 1,2

1 / 21 log ,
2 / 2

/ 21 log .
2 1 / 2

æ ö÷ç - + ÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷ç ÷çè ø
æ ö÷ç ÷ç + ÷ç ÷ç= ÷ç ÷ç ÷÷ç - + ÷çè ø

A

r

r
A

h P β ρ σ
R

σ

h P σ
R

h P β ρ σ

(4)

Ⅳ. Proof for Achievability of 
(SIC; CIS)
2R .

For the stronger channel gain user, after SIC, the

channel reduces simply to an AWGN channel. Thus,

(SIC; CIS)
1R can be proved by the conventional

random channel coding theorem in [8]. However,

for the weaker channel gain user, we encounter a

novel channel, i.e., additive correlated Gaussian

noise (ACGN) channel. Even though the achievable

rate for such channels was derived in [7], the

rigorous proof for the achievability is still missing.

Thus, in this letter, we prove the achievability of

(SIC; CIS)
2R .

We will use the same ideas as in the proof of the

random channel coding theorem[8] in the case of

AWGN channels, namely, random codes and joint

typicality decoding. However, we must make some

modifications to take into account CIS and ACGN;

Specifically, for CIS, the random codes are

generated according to a jointly Gaussian

distribution with the same correlation coefficient as

CIS. And we decode the codewords with respect to

ACGN, not AWGN. In this case, the noise variance

is obtained by the conditional variance.

1. Generation of the codebook: We generate a

codebook in which all the codewords satisfy the

power constraint. To ensure this, we generate the

codewords with each element i.i.d. according to a

jointly Gaussian distribution with the constant total

transmitted power e-P , and the correlation

coefficient 1,2ρ . Let ( )1 2, În nx w w R be

codewords, i.e.,

( )
( ) ( ) ( )( )

1 2

1 1 2 2 1 2 1 2

,

, , , , , ,

=

L

n

n

x w w

x w w x w w x w w
(5)

where 1 2£ £ jnR
jw , 1,2=j , with some rates 1R

and 2R .

2. Encoding: After the generation of the

codebook, the codebook is revealed to both the base

station and the receiver of the weaker channel gain

user. To send the message index ( )1 2,w w , the base

station sends the ( )1 2, thw w codeword

( )1 2, În nx w w R in the codebook.

3. Decoding: The receiver of the weaker channel

gain user looks down the list of codewords

( ){ }2,*nx w , where * denotes an arbitrary index of

the stronger channel gain user, and searches for one

that is jointly typical with the received vector 2
ny .
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Fig. 1. Achievable rate regions of conventional SIC

NOMA for IIS and CIS with
2
1,2 0, 0.3, 0.67, 0.9r = ,

( 2/ 50P =s , 1 2h = , 2 0.1h = , and 2M = ).

If there is one and only one such codeword, the

receiver declares it to be the transmitted codeword.

Otherwise the receiver declares an error. The

receiver also declares an error if the chosen

codeword does not satisfy the power constraint.

4. Probability of error: Without loss of

generality, assume that codeword ( )1,1nx was sent.

Thus

( )2 2 21,1 .= +n n n ny h x n (6)

Define the following events:

( )2
0

1
1,1

=

ì üï ïï ï= >í ýï ïï ïî þ
å
n

i
i

E x nP (7)

and

( )( ){ }1, 2 is in the . jointly typical s1 , et,  = n n
jE x j y (8)

Then an error occurs if 0E occurs (the power 

constraint is violated) or 1,1
cE occurs (the 

transmitted codeword and the received 
sequence are not jointly typical) or 

21,2 1,3 1,2È È ÈL nRE E E (9)

occurs (some wrong codeword is jointly typical with

the received sequence). Let E denote the event

( ) ( )2 2ˆ1, 1,¹w w . Hence

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

2

0 1,1 1,2 1,3 1,2

0 1,1 1,2 1,3 1,2

2

0 1,1 1,
2

,
=

= È È È È È

£ + + È È È

£ + +å

L

L

nR

nR

nR

c

c

c
j

j

E E E E E

E E E E E

E E E

P P

P P P

P P P

E

(10)

by the union of events bound for probabilities. By

the law of large numbers, ( )0 0®EP as ®¥n .

Now, by the joint asymptotic equipartition property

(AEP), ( )1,1 0®cEP , and hence

( )1,1 for  sufficiently large.£cE ε nP (11)

Since by the code generation process, ( )1,1nx and

( )1,nx j are independent, so are 2
ny and ( )1,nx j .

Hence, the probability that ( )1,nx j and 2
ny will be

jointly typical is
( )(SIC; CIS)

2, 32- -£ rn R ε
by the joint AEP.

Hence

( ) ( ) ( )

( )

(SIC; CIS)
2,2

(SIC; CIS)
2, 2

3

3

2 1 2

2 2
3

- -

- -

£ + + -

£ + +
£

r

r

n R εnR

n R Rnε

ε ε

ε ε
ε

P E
(12)

for n sufficiently large and
(SIC; CIS)

2 2, 3< -rR R ε .

This proves the existence of a good code. Q.E.D.

Ⅴ. Results and Discussions

Even though in the previous section, we proved

the achievable rates for the real channels, which is

decomposed from the complex channel, in this

section, we depict the achievable rates for the

complex channels, which is calculated from the

achievable rates for the real channels by the

following relationship
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(SIC; CIS) (SIC; CIS)
2 2,2 22 .

/ 2
æ ö æ ö÷ ÷ç ç=÷ ÷ç ç÷ ÷ç çè ø è ør
P PR R
σ σ

(13)

We investigate the two-user NOMA scenario,

2M = . The constant total transmitted

signal-to-noise power ratio (SNR) is 2/ 50P =s ,

and the channel gains 1h and 2h are assumed to

be 2 and 0.1 , respectively. In Fig. 1, for the

various values of the correlation coefficient,

2
1,2 0, 0.3, 0.67,r = and 0.9 , the achievable rate

regions are depicted. As shown in Fig. 1, the

achievable rate region of SIC NOMA with CIS is no

larger than that of SIC NOMA with IIS. Especially,

the maximum rate of
(SIC; CIS)
1R is less than that of

(SIC; IIS)
1R . Specifically, when 1 1=α and 1 1=β , we

have

( )

2 2
1(SIC; IIS)

21 2

22 2
1 1,2(SIC; CIS)

21 2

log ,

1
log .

æ ö+ ÷ç ÷ç ÷= ç ÷ç ÷÷çè ø

æ ö÷ç - + ÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷ç ÷ç ÷è ø

h P σ
R

σ

h P ρ σ
R

σ

(14)

Therefore, we can have
(SIC; CIS) (SIC; IIS)
1 1<R R ,

with
2

1,2 0¹ρ .

In addition, we comment on the case for the

number of users more than two; Based on the results

of the two-user case, for the strongest channel gain

user, we have

(SIC; CIS) (SIC; IIS)
1 1 .R R= (15)

It should be noted that for the weakest channel

gain user, we have

(SIC; CIS) (SIC; IIS).M MR R? (16)

Ⅵ. Conclusion

In this letter, we proved the random channel

coding theorem for the channel capacity of ACGN

channel. Even though we followed the same ideas as

in the proof of the random channel coding theorem

in the case of AWGN channels, we made some

modifications to take into account CIS and ACGN,

which are our main contributions, specifically

random codes generated according to a jointly

Gaussian distribution.
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