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요 약

양자 컴퓨팅은 기술적 발전과 양자 알고리즘을 이용한 문제 해결의 확실한 장점 덕분에 관심이 증가하는 추세

에 있다. 가장 잘 알려진 알고리즘 중 하나는 큰 정수를 인수분해하기 위한 쇼어 (shor) 알고리즘인데, 그 구성 요

소 중 하나로 모듈러 지수 (modular exponentiation) 회로가 필요하다. 본 논문에서는 모듈러 지수 회로의 기본 구

성 요소로서 효율적인 가산기(adder)를 구축하는 것의 중요성에 대해 논한다. 특히, Vedral-Barenco-Ekert (VBE),

Cuccaro Adder와 같은 비교적 잘 알려진 두 개의 양자 리플-캐리 가산기 회로에 초점을 맞춘다. 또한, 본 논문에

서는 회로 깊이, 폭 및 크기 측면을 Qiskit 양자 시뮬레이션을 사용하여 두 가지 시나리오로 이 회로들의 비용을 평

가한다. 첫 번째로, 하나의 가산기만 사용한 경우. 두 번째로는, 쇼어 알고리즘 회로에 통합할 경우로 평가한다. 그

결과로 기본 구성 요소의 작은 개선이 쇼어 알고리즘 회로의 전체 비용을 크게 절약할 수 있다는 것을 보여준다. 마

지막으로, 본 논문에서는 ETRI Q-Crypton 양자 시뮬레이터를 사용하여 Cuccaro Adder 회로의 변형 버전을 제시하

고 쇼어 알고리즘에서 비용 절감 효과를 분석하여 추가적인 개선의 가능성을 탐구하는 것으로 결론을 내린다.

Key Words : quantum computing, quantum circuit, performance evaluation, ripple-carry adders, Qiskit,

Q-Crypton quantum simulator

ABSTRACT

The field of quantum computation has been on the rise due to technological advances and the apparent

advantages of solving problems using quantum algorithms. One of the most well-known algorithms is Shor's

algorithm for factoring large integers, which requires a modular exponentiation circuit as one of its

components.In this paper, we discuss the importance of building an efficient adder as the basic building block

of the modular exponentiation circuit. Furthermore, we evaluate their cost in terms of circuit depth, width, and

size, using Qiskit quantum simulator in two scenarios: (1) when used as a single adder, and; (2) when

incorporated in Shor's algorithm circuit. The result shows that even the slightest improvement in the underlying

adder translates to a relatively large saving to the overall cost of Shor's algorithm circuit. Finally, we conclude

by exploring the possibilities of adder improvement by presenting a modified version of Cuccaro Adder circuit

and analyzing its cost reduction in Shor's algorithm using ETRI Q-Crypton quantum simulator.
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Ⅰ. Introduction

Quantum computing has undergone a major

development in the recent years. A higher number of

qubits has been achieved in a shorter period of time,

making the practical implementation of quantum

algorithms for solving real-world problems feasible

in the foreseeable future. One of the quantum

algorithms with the most significant impact is Shor's

algorithm, which can factor a large composite prime

integer in polynomial time instead of sub-polynomial

time as in the classical computation. This algorithm

threatens the security of the widely-used RSA

cryptosystems, which is based on the assumption of

the difficulty of factoring large numbers.

One of the most computationally expensive parts

of Shor's algorithm is the modular exponentiation.

Among the methods that have been proposed to

realize the circuit, construction from repeated

addition as first proposed in [1] remains one of the

most popular. In this case, an efficient addition

circuit will significantly benefit the Shor's algorithm

circuit in general.

Furthermore, the addition circuit is also the base

of various other algorithms. Several examples are

for use in quantum Toom-Cook multiplication[2],

Montgomery multiplication[3], and quantum division

circuit[4], which often uses addition circuit

repeatedly. Hence, how to improve the existing

adders will always be a relevant research question in

quantum computation.

In this paper, we discuss and evaluate the

performance of the quantum addition circuit.

Specifically, we put our attention to two popular

variants of ripple-carry adder: the naive-yet-the

simplest approach adapted from the classical

reversible circuit, namely the Vedral-Barenco-Ekert

(VBE) adder[1]; and the Cuccaro adder[5], a slightly

recent approach which has been more frequently

used in the quantum algorithms. We evaluate the

cost of these two adders using Qiskit quantum

simulator[6] in two scenarios: for the use as a single

adder; and for the use in the underlying circuit of

Shor's Algorithm. Finally, we explore the

improvements for further reducing the cost of

ripple-carry adders, in which we take the example of

the slightly modified Cuccaro adder that replaces

some of its components by Peres gate and

Negative-control Toffoli gate to give lower circuit

depth. The evaluation using another quantum

simulator that supports a more complete resource

analysis, namely the ETRI Q-Crypton, shows that

the modified adder gives a lower overall cost metric

than the original Cuccaro adder when employed in

the Shor's algorithm.

Ⅱ. Related Work

There are several works that describe the

implementation of Shor's algorithm up to the gate

level, such as the library provided by Qiskit[8], and

a sample in Microsoft Quantum Development Kit

(QDK)[9]. However, they mainly leverage the adder

proposed by Draper[10] or Beauregard[11], which uses

a very different concept from the ones usually found

in the classical computation. Instead of utilizing

binary arithmetic, these adders use a similar

principle to that of the Quantum Fourier Transform

(QFT), in which the computation is performed using

a series of controlled rotation (cRn) gates. Even

though these adders are relatively easy to instantiate

in the quantum simulator and require a lower

number of qubits, several argue that large circuits

based on the QFT approach would not be practical

in the near future due to the high number of

overheads for error correction in cRn gates[12].

Therefore, current methods for constructing a

modular exponentiation circuit are more into

leveraging the gates that already existed in the

reversible computing, such as CNOT and Toffoli

gates, using binary arithmetic operations similar to

the classical computation.

Regarding which options are the best fit, Rines

and Chuang in [15] note that a direct cost

comparison between the QFT and binary arithmetic

would be difficult since each has different metrics to

be considered. In this paper, we focus only on the

ones utilizing binary arithmetic since they can be

efficiently simulated in classical computers.
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Ⅲ. Adders and Shor's Algorithm

3.1 Overview of Shor's Algorithm
Shor's algorithm[13], proposed in 1994 by Peter

Shor, is one of the few examples of quantum

algorithms that succeed to show a real advantage of

quantum computation over the classical counterpart.

In particular, the proposal shows that quantum

computation can be used to solve two problems in

polynomial time: (1) to decompose a large

composite integer into its prime factors, and; (2) to

find the discrete logarithms over finite groups[14],

leveraging quantum interference to compute the

period in the process. Both problems imply that in

the existence of a large working quantum computer,

the use of current public-key cryptography that relies

on discrete logarithm problem (i.e., RSA and ECC)

is deemed to be easily crackable.

Of the two variants of Shor's algorithm, the more

well-studied topic is the one for factoring large

numbers (also known as the quantum factoring

algorithm). Comprising two registers as illustrated in

Fig. 1, the algorithm starts by applying concurrent

Hadamard gates to the first register, which becomes

the input for the succeeding modular exponentiation

circuit in the second register. The Inverse QFT

(IQFT) is then applied to the first register before the

result is retrieved via measurement and

post-processing. Note that this algorithm is

probabilistic, meaning that the correct solution may

not be achieved in just one run.

Fig. 1. General circuit for Shor’s quantum factoring
algorithm [7]

3.2 Adder's Role in Shor's Algorithm
In Shor's Algorithm, the most non-trivial

implementation is the modular exponentiation

circuit. One of the earliest explicit implementations

of the circuit is presented by Vedral et al., in [1],

which basically proposes the use of repeated

addition. Recently, more advanced modular

exponentiation circuits have already been proposed,

but many are essentially still leveraging the concept

of repeated addition as in [1].

Additionally, an adder can also be used for

performing subtraction. This is done by reversing

the steps of addition, i.e., by a reversed adder

circuit. Furthermore, adders are also utilized to build

the circuit that performs the modular operation (i.e.,

operation in Galois Field). In this sense, the adder

(and its reverse) can be considered as the basic

building block of modular exponentiation. Since

adder blocks are used extensively throughout the

circuit, they are expected to be as efficient as

possible.

3.3 VBE Adder
Vedral-Barenco-Ekert (VBE) adder[1] is one of the

earliest and straightforward quantum reversible

adders. As illustrated in Fig. 2, VBE adder consists

of several types of block: the Carry block,

comprising a series of Toffoli-CNOT-Toffoli gates:

the Sum block, consisting of CNOT-CNOT gates;

and the Reversed carry block, which undoes (i.e.,

uncomputes) the carry operation while also

computing the sum. This uncomputation is the

consequence if one wants to construct an in-place

adder using these blocks, i.e., quantum operation

performing ⟩→⟩with  and  as the

inputs.

Fig. 2. VBE ripple-carry adder, redrawn from [1]

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-02 Vol.46 No.02

336

3.4 Cuccaro Adder
Cuccaro adder (sometimes also referred to as

CDKM adder)[5], first proposed by Cuccaro et al., is

one of the first improvements in ripple-carry

addition circuits. Unlike VBE adder which consists

of a series of Carry and Sum gates, Cuccaro adder

works by employing two different kinds of blocks:

MAJ (Majority), which computes the majority of

three bits, and UMA (UnMajority-and-Add), which

undoes the MAJ block while also computing the

sum. A series of MAJ and UMA blocks perform the

addition operation, as illustrated in Fig. 3.

In [5], the authors provide two types of UMA

blocks: the 2-CNOT version which is easier to

understand, and the 3-CNOT version, which allows

more parallelization when constructed as an adder.

In the literature, Cuccaro adder and its modification

variants are commonly found as the underlying

circuit of proposed quantum algorithms, such as in

[2,16]. This adder has a lower width than the VBE

adder since it only uses one ancilla bit instead of

n-O(1).

Fig. 3. Cuccaro ripple-carry adder [5]

Ⅳ. Constructing Modular Exponentiation 
from Addition Circuit 

4.1 VBE General Modular Exponentiation Circuit
In this paper, we ground our discussion based on

the modular exponentiation circuit by VBE[1] since it

was the first circuit to describe in detail about the

construction, while also provides the conceptually

simplest circuit in the classically inspired approach.

Hence, we can say that their method is the baseline

for simulating and evaluating the modular arithmetic

circuit. In fact, other references (e.g., [17]) have

featured[1] for its detailed elaboration of modular

exponentiation circuit construction for Shor's

algorithm.

In [18], the authors have assembled the modular

exponentiation circuit in Qiskit based on the VBE

approach. Specifically, they simulated the 4-bit VBE

modular exponentiation of modulus value N=15.

However, they did not go further to the valid Shor's

algorithm for simulation (i.e., run the circuit until

performing measurement, and employing 8 bit

instead of only 4 bit in the argument register) due

to the limited number of QASM instructions.

Nevertheless, the resource estimates and the figures

are still able to be acquired. In this section, we

provide their circuit for Shor's algorithm briefly to

ease the comprehension of reader on the importance

of adder as well as for completeness.

Essentially, VBE[1] proposes these steps to realize

the modular exponentiation circuit as follows.

1. Adder, which outputs ,  ≤ ;

2. Modular adder, which outputs  mod N;

3. Modular multiplexer, which outputs  mod N;

4. Modular multiplier, which outputs  mod N.

For Shor’s quantum factoring algorithm, the

exponentiation is by a constant, meaning that we

only have one variable as input while the other

value is hardwired. In the notation,  represents the

constant value,  points to the variable input, and N

denotes the modulus value to be factored and is

always fixed during the whole computation. Note

that the  and  in point 3 and 4 above do not

necessarily represent the same values, whereas N

always refers to the same value during computation.

4.2 Modular Adder
Modular adder can be built by five adders, two of

which are reversed version that performs subtraction.

It outputs  when the result is still greater

than 0, otherwise it will not perform subtraction by

N (i.e., outputs  instead). As illustrated in Fig.

4 (taken from [18]), three adders are required for the

modular addition while the other two are only for

restoring the temporary qubit back to ⟩.
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(a)

(b)

Fig. 5. Modular multiplier circuit: (a) redrawn from
[1][15], (b) presented in [18].

(a)

(b)

Fig. 6. Modular exponentiation circuit: (a) redrawn from
[1][15], (b) presented in [18].

(a)

(b)

Fig. 4. Modular adder circuit: (a) redrawn from [1][15],
(b) presented in [18].

4.3 Modular Multiplier
Modular multiplier circuit is constructed from a

series of modular adders by utilizing the binary

expansion of  for the constant and making  as

hardwired, as presented in Eq. (1).

  
 …

 
 





(1)

The circuit is as illustrated in Fig. 5. Note that

the required circuit is the controlled version rather

than the general one, with the state mapping is as

defined in [17], presented in Eq. (2).

(2)

Additionally, after a number is assigned and

modular addition is performed, the numbers to be

appended (e.g., ) are uncomputed, to be replaced

by the consequent numbers (e.g., ). Note that in

the figure, the first part to be computed is the lowest

significant bit (LSB).

4.4 Modular Exponentiation
In terms of modular exponentiation, the circuit

realizes Eq. (4) and the mapping is

⟩ mod ⟩.

  
  

  

×
  

  

×⋯ 
 ×

  
 
 






(4)

However, compared to the previous, this circuit is

not as straightforward to build. It requires swapping

the values and appending the multiplier that

computes the inverse of the preceding circuit, as
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Fig. 7. Cost comparison of single VBE and Cuccaro
adder

shown in Fig. 6. For a more detailed explanation,

interested readers may refer to [18].

Ⅴ. Evaluation of Ripple-Carry Adders 

5.1 Experiment Method and Setup
In this section, we perform several experiments in

IBM Qiskit quantum simulator to evaluate the

performance of VBE and Cuccaro adder. Even

though a mathematical formulation is possible, in

this study, we leverage the result obtained by the

quantum simulator to acquire a closer behavior to

quantum hardware. Currently, the performance

metrics available in Qiskit are circuit width, depth,

and size. Circuit width corresponds to the number of

qubits and classical bits; circuit depth represents the

length of critical path or the lowest number of time

steps; circuit size refers to the number of gates in

the circuit.

For the first scenario, we simulate the adders as

a standalone (i.e., evaluate a single adder only,

without employing it into a larger circuit) and

evaluate them for an increasing number of inputs. In

particular, we obtain the resource count for the bit

length from 4-bit up to 300-bit addition circuit, with

zeros as the input of the adders. We provide the

result in two types of compilation level supported by

Qiskit: (1) the standard version, which compiles

as-is (i.e., only to the logical layer); and (2) the

decomposed version, which expands to a lower-level

compilation.

For the second scenario, we evaluate each adder

when incorporated as the building block of Shor's

algorithm to investigate how the resource

requirement scale for larger circuits. In this case, we

only run from 4-bit up to 16 bitlength of the number

to be factored (i.e., modulus value N) due to our

limited resource. Additionally, the measured metrics

for this scenario are circuit width, depth

(decomposed), and size (decomposed).

Instead of zeroing the inputs as in the first

scenario, in the second scenario, we run the circuit

with a valid value of  and N accordingly (i.e., 

mod 15 for 3-bit factoring,  mod 21 for 4-bit

factoring, and so on). Additionally, to closely follow

the requirement of Shor's algorithm (which is often

overlooked in the existing simulations), we prepare

the first register in size   ≦     qubits.

In terms of the experiment environment, we run

the evaluation on Qiskit version 0.14.0 in our local

PC, with the specification of Windows 10 Pro,

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 6

Cores, 12 logical processors, and 64 GB of RAM.

Regarding the code simulation of Shor's algorithm

in Qiskit, we refer to the scheme in [18].

Note that in the next section (Section VI), we

perform one additional evaluation, that is to compare

between Cuccaro adder and its modified version,

which is expected to improve the original circuit and

give a lower cost. Different from this section, the

experiments in the next section are performed in

ETRI's Q-Crypton, a web-based quantum simulator

that provides not only a simulation but also an

in-depth resource analysis of a quantum circuit.

5.2 Evaluation of Single VBE and Cuccaro 
Adder 

For comparing the cost of standalone VBE and

Cuccaro adder, the result of the experiment is

presented in Fig. 7, with x-axis representing the

n-bit addition and y-axis depicting all of the cost

metrics in logarithmic scale. The dashed and solid

lines in the figures belong to VBE and Cuccaro

adder, respectively.

Overall, Cuccaro adder yields lower cost in

almost all of the metrics except one. In particular,

for the same n-bit addition, metrics with the highest
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Fig. 8. Cost comparison of single VBE and Cuccaro
adder

Fig. 9. Cost comparison of single VBE and Cuccaro
adder

cost reduction is in the following order: circuit size

(decomposed), depth (standard), depth

(decomposed), and width. Furthermore, as the bit

increases, the cost reduction percentage also shows

a trend of increase. In other words, the efficiency is

more apparent for larger circuits, as presented in

Table 1.

For instance, for a 5-bit addition, the

improvements in terms of width, depth (standard),

depth (decomposed), and size (decomposed) are

around 18, 14, 19, and 35 percent, respectively,

whereas for a 6-bit addition, the number scales to

around 21, 24, 22, and 38 percent, respectively.

Note that above 100-bit addition, the percentage of

increase becomes more gentle; for 300-bit addition,

the number stays around 25, 33, 26, and 41 percent,

respectively.

Nevertheless, in terms of size (standard), VBE

adder shows a lower cost. This is because we use

the 3-CNOT version of UMA gate in Cuccaro adder

to achieve more parallelization. Additionally, readers

may notice that the performance difference in the

standard compilation and decomposed version seems

contradictory. However, there is an explanation for

this occurrence; that is because VBE employs more

Toffoli gates than Cuccaro adder. In a decomposed

version, the compiler unrolls the instruction to a

lower level. While CNOT gates are native to

superconducting circuits as the base architecture of

Qiskit quantum simulator, each Toffoli gate is

dissected into a series of Hadamard and T gates,

resulting in a higher gate count in the real

implementation.

Table 1. Percentage of Improvement of Cuccaro Adder
over VBE Adder for Selected Values of n

5.3 Evaluation of VBE and Cuccaro Adder in 
Shor’s Algorithm

Regarding the overall cost in Shor's algorithm,

we separate the figures for different metrics for ease

of reading. Additionally, we do not employ a

logarithmic scale since the x-axis only covers a

small value (only up to 16-bit modulus). The

comparison of depth, width, and size of Shor's

algorithm utilizing VBE and Cuccaro adder is shown

in Fig. 8, Fig. 9, and Fig. 10, respectively, and the

percentage of overall performance is presented in

Table 2. Note that for this subsection, width and

size refer to the decomposed version rather than the

standard version.

As shown in the figures, different adders yield a

considerable cost difference in Shor's algorithm,

even though we only use small bitlengths for our

experiment. In terms of circuit depth and width,

Cuccaro adder gives lower cost, which is consistent
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Fig. 10. Circuit size comparison of Shor’s algorithm
employing VBE and Cuccaro adder

Table 2. Improvement of Shor's Algorithm using Cuccaro
Adder over VBE Adder, from n=3 to n=16

with what we have previously seen in the single

adder implementation.

As presented in Fig. 8, the difference in depth is

considerably high. For instance, in the 16-bit case,

the depth of Shor's algorithm employing VBE adder

is around 472 thousand while it is only 348

thousand when Cuccaro adder is used, or around 26

percent. Additionally, as shown in Fig. 9, an

improvement of around 9 percent (145 as opposed

to 160) is achieved in terms of width. Even though

the level of improvement is not as high as that of

the depth, circuit width is also a scarce resource

because it translates to the required number of

logical qubits to run a quantum algorithm, and its

reduction is not as easy. Hence, 9 percent of

improvement can be considered as significant.

However, in terms of circuit size, it is the VBE

adder that yields a lower cost, as shown in Fig. 9.

The reason why the result is different from that of

the standalone adder in the previous subsection can

be because the decomposition is only into one layer

below. Since the adder is incorporated into a larger

circuit (i.e., modular adder in our implementation),

the circuit's unrolling may still follow the adder's

standard compilation.

Nevertheless, inferring from Table 2, as the

circuit enlarges, the results seem to be in favor of

the Cuccaro adder. Not only the circuit efficiency in

terms of width and depth increases, but also the size

gap becomes lower. For the 4-bit Shor, the cost

improvement in width, depth, and size is around 7,

7, and –26 percent, respectively, while for the

16-bit, it leaps to around 9, 26, and –15,

respectively. Hence, in Shor's algorithm's real use

(e.g., to crack RSA-2048), a much larger cost

reduction can be acquired by equipping the suitable

addition circuit.

Ⅵ. Possibility of Improvements 

6.1 Improvements in Literature
To reduce the cost –or to improve the

performance– of an adder, one may experiment and

analyze from the existing quantum addition circuit.

In the literature, there have also been various

proposals that aim to reduce the integer addition cost

in one (or more) aspects of performance metrics.

One example is the adder by Takahashi et al.[19],

also known as the TTK adder, which reduces the

qubit size and, to date, is known as the adder with

the lowest width. Gidney et al.[16], proposes a

modification to Cuccaro adder with the primary aim

to reduce the number of T gates in one stage (also

called the "T-depth"), which mainly comes from the

number of Toffoli gates in the circuit. This proposal,

also referred to as the CDKMG adder, utilizes 4n T

gates, but with the tradeoff of n auxiliary qubits.

Additionally, a paper by Draper et al.[20], targets on

reducing the T-depth, giving a circuit with

logarithmic depth. The reason why many proposals

focus on reducing the depth is because it describes
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Fig. 11. Operation of Peres Gate

Fig. 12. Modification of Cuccaro adder to reduce depth
in [22]

Table 3. Performance metric of Cuccaro adder in Shor’s
algorithm, from n=3 to n=10

Table 4. Performance metric of modified Cuccaro adder
in Shor’s algorithm, from n=3 to n=10

the time complexity of a circuit[21], which is

essential to be minimized since the decoherence time

in the current quantum hardware is still relatively

small.

Another approach to cost reduction is by

considering another gate model as proposed in [22].

The paper discusses the possibility of utilizing Peres

gate, which is relatively well known earlier in the

reversible computing field and has the lowest

quantum cost when decomposed to NCV library

(i.e., the set that comprises {NOT, CNOT, V, V†}

gates). When Clifford+T, i.e., the set of gates

comprises {NOT, CNOT, H, Z, S, S†, T, T†}

becomes a more preferred implementation for a

fault-tolerant library, the discussion of Peres gate

had subsided, but emerges again when Amy et al.,

in [23] presents the decomposition of Peres gate to

Clifford+T library. The operation of Peres gate is

illustrated in Fig. 11.

In [22], the possibility of constructing the

Cuccaro adder based on the gates in Fig. 11 is

discussed. Specifically, the aim is to reduce the

circuit's depth by replacing a particular part of the

Cuccaro adder by Peres gate and negative-control

Toffoli gate as illustrated in Fig. 12. Essentially, a

consecutive Toffoli-CNOT gate is replaced by the

decomposition of Peres gate to Clifford+T library,

while the commuting X-Toffoli-X gate is replaced

by the decomposition of negative-control Toffoli as

shown in Fig. 12.

For the work in [22], a simulation is done in

ETRI Q-Crypton quantum simulator. This simulator

supports a resource estimation, namely the "DNA

Analysis", that provides a relatively more complete

list of performance metrics, ranging from algorithm

level (namely, "Compile level") to the fault-tolerant

quantum computation ("FTQC level"). In [22], the

authors show the performance comparison for 3-bit

addition, which yields improvements ranging from 3

to 40 percent. As for larger qubits, the simulation

and resource estimation are run for 3 to 10-bit

addition, which also shows a considerable cost

saving.

6.2 Cost Reduction of Modified Cuccaro 
Adder in Q-Crypton Quantum Simulator

We are inspired by the work of [22] to continue

investigating the cost reduction of their modified

Cuccaro adder with the original one by incorporating

each of them into the Shor's algorithm circuit. For

this experiment, instead of using Qiskit like the

experiment in the previous section, we instead

utilize Q-crypton quantum simulator to acquire a

more complete cost estimation.

The script of Shor's algorithm is written by us,

which yields the FTQC level's cost as presented in

Table 3 and Table 4 for the original Cuccaro and

the modified version, respectively. Note that the
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result for Compile level is omitted for brevity since

it is also reflected on the FTQC level. Furthermore,

there may be differences between resource estimates

in Q-Crypton and Qiskit due to different settings,

compilation, and decomposition methods between

the two simulators.

As shown in Table 5, the modified Cuccaro adder

gives a cost reduction over the original one, ranging

from 4 to 6 percent when employed in Shor's

algorithm. Even though the difference is less evident

when discussed in percentage compared to between

VBE and Cuccaro adder, from Table 3 and Table 4,

the difference in values is quite large, such as in the

circuit depth. Hence, the use of an improved adder

may indeed yield a significant cost saving for Shor's

algorithm.

Table 5. Improvement of the modified compared to
original Cuccaro adder in Shor’s algorithm, from n=3 to
n=10

Ⅶ. Conclusion

In this paper, we have discussed two well-known

variants of quantum ripple-carry adders, namely the

VBE and Cuccaro adder. We started by elaborating

on the roles of adders and their part in the

construction of larger circuit, with modular

exponentiation for Shor's algorithm as the example.

From our experiment in Qiskit, it has been shown

that Cuccaro adder outperforms the VBE adder for

standalone use for almost all metric, whereas for the

use in Shor's algorithm, it excels than VBE in terms

of circuit depth and width, but with a tradeoff of a

larger circuit size for our current implementation.

However, it should be noted that there is no

one-size-fits-all option; choosing which adder to use

in general will heavily depend on the predetermined

cost metrics that one wants to achieve. Thus, we

also discussed the recent proposals in the quantum

adders to reduce some specific performance metrics,

along with the example of improvement by utilizing

Peres gate and negative-control Toffoli gate for use

in Shor's algorithm, evaluated using Q-Crypton

simulator. To conclude, the seemingly small

improvement in adders yields a considerable cost

reduction for Shor's algorithm circuit and, thus, shall

always be pursued.
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