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ABSTRACT

The field of quantum computation has been on the rise due to technological advances and the apparent
advantages of solving problems using quantum algorithms. One of the most well-known algorithms is Shor’s
algorithm for factoring large integers, which requires a modular exponentiation circuit as one of its
components.In this paper, we discuss the importance of building an efficient adder as the basic building block
of the modular exponentiation circuit. Furthermore, we evaluate their cost in terms of circuit depth, width, and
size, using Qiskit quantum simulator in two scenarios: (1) when used as a single adder, and; (2) when
incorporated in Shor’s algorithm circuit. The result shows that even the slightest improvement in the underlying
adder translates to a relatively large saving to the overall cost of Shor’s algorithm circuit. Finally, we conclude
by exploring the possibilities of adder improvement by presenting a modified version of Cuccaro Adder circuit

and analyzing its cost reduction in Shor’s algorithm using ETRI Q-Crypton quantum simulator.
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I. Introduction

Quantum computing has undergone a major
development in the recent years. A higher number of
qubits has been achieved in a shorter period of time,
making the practical implementation of quantum
algorithms for solving real-world problems feasible
in the foreseeable future. One of the quantum
algorithms with the most significant impact is Shor’s
algorithm, which can factor a large composite prime
integer in polynomial time instead of sub-polynomial
time as in the classical computation. This algorithm
threatens the security of the widely-used RSA
cryptosystems, which is based on the assumption of
the difficulty of factoring large numbers.

One of the most computationally expensive parts
of Shor’s algorithm is the modular exponentiation.
Among the methods that have been proposed to
realize the circuit, construction from repeated
addition as first proposed in [1] remains one of the
most popular. In this case, an efficient addition
circuit will significantly benefit the Shor’s algorithm
circuit in general.

Furthermore, the addition circuit is also the base
of various other algorithms. Several examples are
for use in quantum Toom-Cook multiplication',
Montgomery multiplication”®, and quantum division
circuit™, which often wuses addition circuit
repeatedly. Hence, how to improve the existing
adders will always be a relevant research question in
quantum computation.

In this paper, we discuss and evaluate the
performance of the quantum addition circuit.
Specifically, we put our attention to two popular
variants of ripple-carry adder: the naive-yet-the
simplest approach adapted from the classical
reversible circuit, namely the Vedral-Barenco-Ekert
(VBE) adder'; and the Cuccaro adder™, a slightly
recent approach which has been more frequently
used in the quantum algorithms. We evaluate the
cost of these two adders using Qiskit quantum
simulator’ in two scenarios: for the use as a single
adder; and for the use in the underlying circuit of
Shor’s  Algorithm. Finally, we explore the

improvements for further reducing the cost of
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ripple-carry adders, in which we take the example of
the slightly modified Cuccaro adder that replaces
some of its components by Peres gate and
Negative-control Toffoli gate to give lower circuit
depth. The evaluation wusing another quantum
simulator that supports a more complete resource
analysis, namely the ETRI Q-Crypton, shows that
the modified adder gives a lower overall cost metric
than the original Cuccaro adder when employed in
the Shor’s algorithm.

II. Related Work

There are several works that describe the
implementation of Shor’s algorithm up to the gate
level, such as the library provided by Qiskit™, and
a sample in Microsoft Quantum Development Kit
(QDK)"!. However, they mainly leverage the adder
proposed by Draper''” or Beauregard!""!, which uses
a very different concept from the ones usually found
in the classical computation. Instead of utilizing
binary arithmetic, these adders use a similar
principle to that of the Quantum Fourier Transform
(QFT), in which the computation is performed using
a series of controlled rotation (cRn) gates. Even
though these adders are relatively easy to instantiate
in the quantum simulator and require a lower
number of qubits, several argue that large circuits
based on the QFT approach would not be practical
in the near future due to the high number of
overheads for error correction in cRn gates!'.
Therefore, current methods for constructing a
modular exponentiation circuit are more into
leveraging the gates that already existed in the
reversible computing, such as CNOT and Toffoli
gates, using binary arithmetic operations similar to
the classical computation.

Regarding which options are the best fit, Rines
and Chuang in [15] note that a direct cost
comparison between the QFT and binary arithmetic
would be difficult since each has different metrics to
be considered. In this paper, we focus only on the
ones utilizing binary arithmetic since they can be
efficiently simulated in classical computers.
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. Adders and Shor's Algorithm

3.1 Overview of Shor's Algorithm

Shor’s algorithm™), proposed in 1994 by Peter
Shor, is one of the few examples of quantum
algorithms that succeed to show a real advantage of
quantum computation over the classical counterpart.
In particular, the proposal shows that quantum
computation can be used to solve two problems in
polynomial time: (1) to decompose a large
composite integer into its prime factors, and; (2) to
find the discrete logarithms over finite groups!*,
leveraging quantum interference to compute the
period in the process. Both problems imply that in
the existence of a large working quantum computer,
the use of current public-key cryptography that relies
on discrete logarithm problem (i.e., RSA and ECC)
is deemed to be easily crackable.

Of the two variants of Shor’s algorithm, the more
well-studied topic is the one for factoring large
numbers (also known as the quantum factoring
algorithm). Comprising two registers as illustrated in
Fig. 1, the algorithm starts by applying concurrent
Hadamard gates to the first register, which becomes
the input for the succeeding modular exponentiation
circuit in the second register. The Inverse QFT
(IQFT) is then applied to the first register before the
result is retrieved via measurement and
post-processing. Note that this algorithm is
probabilistic, meaning that the correct solution may

not be achieved in just one run.
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Fig. 1. General circuit for Shor’s quantum factoring
algorithm [7]

3.2 Adder's Role in Shor's Algorithm
In Shor’s Algorithm, the most non-trivial
implementation is the modular exponentiation

circuit. One of the earliest explicit implementations

of the circuit is presented by Vedral et al, in [1],
which basically proposes the use of repeated
addition. Recently, more advanced modular
exponentiation circuits have already been proposed,
but many are essentially still leveraging the concept
of repeated addition as in [1].

Additionally, an adder can also be used for
performing subtraction. This is done by reversing
the steps of addition, i.e., by a reversed adder
circuit. Furthermore, adders are also utilized to build
the circuit that performs the modular operation (i.e.,
operation in Galois Field). In this sense, the adder
(and its reverse) can be considered as the basic
building block of modular exponentiation. Since
adder blocks are used extensively throughout the
circuit, they are expected to be as efficient as

possible.

3.3 VBE Adder

Vedral-Barenco-Ekert (VBE) adder' is one of the
earliest and straightforward quantum reversible
adders. As illustrated in Fig. 2, VBE adder consists
of several types of block: the Carry block,
comprising a series of Toffoli-CNOT-Toffoli gates:
the Sum block, consisting of CNOT-CNOT gates;
and the Reversed carry block, which undoes (i.e.,
uncomputes) the carry operation while also
computing the sum. This uncomputation is the
consequence if one wants to construct an in-place
adder using these blocks, i.e., quantum operation

performing la,b) —la,a+b> with ¢ and b as the

inputs.
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Fig. 2. VBE ripple-carry adder, redrawn from [1]

335

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences "21-02 Vol.46 No.02

3.4 Cuccaro Adder

Cuccaro adder (sometimes also referred to as
CDKM adder)™, first proposed by Cuccaro ef al, is
one of the first improvements in ripple-carry
addition circuits. Unlike VBE adder which consists
of a series of Carry and Sum gates, Cuccaro adder
works by employing two different kinds of blocks:
MAJ (Majority), which computes the majority of
three bits, and UMA (UnMajority-and-Add), which
undoes the MAJ block while also computing the
sum. A series of MAJ and UMA blocks perform the
addition operation, as illustrated in Fig. 3.

In [5], the authors provide two types of UMA
blocks: the 2-CNOT version which is easier to
understand, and the 3-CNOT version, which allows
more parallelization when constructed as an adder.
In the literature, Cuccaro adder and its modification
variants are commonly found as the underlying
circuit of proposed quantum algorithms, such as in
[2,16]. This adder has a lower width than the VBE
adder since it only uses one ancilla bit instead of
n-0(1).
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Fig. 3. Cuccaro ripple-carry adder [5]

IV. Constructing Modular Exponentiation
from Addition Circuit

4.1 VBE General Modular Exponentiation Circuit

In this paper, we ground our discussion based on
the modular exponentiation circuit by VBE™ since it
was the first circuit to describe in detail about the
construction, while also provides the conceptually
simplest circuit in the classically inspired approach.
Hence, we can say that their method is the baseline

for simulating and evaluating the modular arithmetic
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circuit. In fact, other references (e.g., [17]) have
featured”! for its detailed elaboration of modular
exponentiation circuit construction for Shor’s
algorithm.

In [18], the authors have assembled the modular
exponentiation circuit in Qiskit based on the VBE
approach. Specifically, they simulated the 4-bit VBE
modular exponentiation of modulus value N=15.
However, they did not go further to the valid Shor’s
algorithm for simulation (i.e., run the circuit until
performing measurement, and employing 8 bit
instead of only 4 bit in the argument register) due
to the limited number of QASM instructions.
Nevertheless, the resource estimates and the figures
are still able to be acquired. In this section, we
provide their circuit for Shor’s algorithm briefly to
ease the comprehension of reader on the importance
of adder as well as for completeness.

Essentially, VBE!" proposes these steps to realize
the modular exponentiation circuit as follows.

1. Adder, which outputs a+b, 0 < a,b;
2. Modular adder, which outputs a+b mod N
3. Modular multiplexer, which outputs az mod N,

4. Modular multiplier, which outputs a” mod N

For Shor’s quantum factoring algorithm, the
exponentiation is by a constant, meaning that we
only have one variable as input while the other
value is hardwired. In the notation, a represents the
constant value, x points to the variable input, and N
denotes the modulus value to be factored and is
always fixed during the whole computation. Note
that the a and = in point 3 and 4 above do not
necessarily represent the same values, whereas N

always refers to the same value during computation.

4.2 Modular Adder

Modular adder can be built by five adders, two of
which are reversed version that performs subtraction.
It outputs a+b— /N when the result is still greater
than O, otherwise it will not perform subtraction by
N (i.e., outputs a+b instead). As illustrated in Fig.
4 (taken from [18]), three adders are required for the
modular addition while the other two are only for

restoring the temporary qubit back to [0 .
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Fig. 4. Modular adder circuit: (a) redrawn from [1][15],
(b) presented in [18].

4.3 Modular Multiplier

Modular multiplier circuit is constructed from a
series of modular adders by utilizing the binary
expansion of x for the constant and making a as
hardwired, as presented in Eq. (1).

r=azx,_2" '+ +az2' +az,2’ =

n—

Ea?’” (1)

The circuit is as illustrated in Fig. 5. Note that

the required circuit is the controlled version rather

Add Only with x
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Fig. 5. Modular multiplier circuit: (a) redrawn from
[1][15], (b) presented in [18].

than the general one, with the state mapping is as
defined in [17], presented in Eq. (2).

lc,x,0,ax mod N) (c = 1)
lc,x,0,x) (c=0) @

CMODMULT(n)|c, x, 0,0 = {

Additionally, after a number is assigned and
modular addition is performed, the numbers to be
appended (e.g., a.2%) are uncomputed, to be replaced
by the consequent numbers (e.g., a.2'). Note that in
the figure, the first part to be computed is the lowest
significant bit (LSB).

4.4 Modular Exponentiation
In terms of modular exponentiation, the circuit
realizes Eq. (4) and the

‘1170> :|£L‘7CLImOd N0> .

mapping  is

However, compared to the previous, this circuit is
not as straightforward to build. It requires swapping
the values and appending the multiplier that

computes the inverse of the preceding circuit, as

First Pair Second Pair Last Pair
(a* modN) | (a% mod N) ‘ (a*n-1 mod N) |
Xy
X
Register 2 ) Jx}
Xn-1 )
Regmer1|1) :»: ',::»: E: 15 E: 15 '::U|a mod N)
Control Qubu 2 2 2 2 2 2 2 2
2 z 2 s. 2 .. 2 s
Register A = ol (2 a Q a el o
<) o 2 o Q 9] Q (<}
Reg\sterB‘O)H:E 5*5 - 15 -8 gﬂw)
—
Inverse of a* mod N Inverse of a*r=1 mod N

(@

(b)

Fig. 6. Modular exponentiation circuit: (a) redrawn from
[1][15], (b) presented in [18].
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shown in Fig. 6. For a more detailed explanation,

interested readers may refer to [18].
V. Evaluation of Ripple-Carry Adders

5.1 Experiment Method and Setup

In this section, we perform several experiments in
IBM Qiskit quantum simulator to evaluate the
performance of VBE and Cuccaro adder. Even
though a mathematical formulation is possible, in
this study, we leverage the result obtained by the
quantum simulator to acquire a closer behavior to
quantum hardware. Currently, the performance
metrics available in Qiskit are circuit width, depth,
and size. Circuit width corresponds to the number of
qubits and classical bits; circuit depth represents the
length of critical path or the lowest number of time
steps; circuit size refers to the number of gates in
the circuit.

For the first scenario, we simulate the adders as
a standalone (i.e., evaluate a single adder only,
without employing it into a larger circuit) and
evaluate them for an increasing number of inputs. In
particular, we obtain the resource count for the bit
length from 4-bit up to 300-bit addition circuit, with
zeros as the input of the adders. We provide the
result in two types of compilation level supported by
Qiskit: (1) the standard version, which compiles
as-is (i.e., only to the logical layer); and (2) the
decomposed version, which expands to a lower-level
compilation.

For the second scenario, we evaluate each adder
when incorporated as the building block of Shor’s
algorithm to investigate how the resource
requirement scale for larger circuits. In this case, we
only run from 4-bit up to 16 bitlength of the number
to be factored (i.e., modulus value A) due to our
limited resource. Additionally, the measured metrics
for this scenario are circuit width, depth
(decomposed), and size (decomposed).

Instead of zeroing the inputs as in the first
scenario, in the second scenario, we run the circuit

with a valid value of a and N accordingly (i.e., 7°
mod 15 for 3-bit factoring, 5* mod 21 for 4-bit
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factoring, and so on). Additionally, to closely follow
the requirement of Shor’s algorithm (which is often
overlooked in the existing simulations), we prepare
the first register in size N? < 2°*° < 2/N? qubits.

In terms of the experiment environment, we run
the evaluation on Qiskit version 0.14.0 in our local
PC, with the specification of Windows 10 Pro,
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 6
Cores, 12 logical processors, and 64 GB of RAM.
Regarding the code simulation of Shor’s algorithm
in Qiskit, we refer to the scheme in [18].

Note that in the next section (Section VI), we
perform one additional evaluation, that is to compare
between Cuccaro adder and its modified version,
which is expected to improve the original circuit and
give a lower cost. Different from this section, the
experiments in the next section are performed in
ETRI’s Q-Crypton, a web-based quantum simulator
that provides not only a simulation but also an

in-depth resource analysis of a quantum circuit.

5.2 Evaluation of Single VBE and Cuccaro
Adder

For comparing the cost of standalone VBE and
Cuccaro adder, the result of the experiment is
presented in Fig. 7, with xaxis representing the
n-bit addition and y-axis depicting all of the cost
metrics in logarithmic scale. The dashed and solid
lines in the figures belong to VBE and Cuccaro
adder, respectively.

Overall, Cuccaro adder yields lower cost in
almost all of the metrics except one. In particular,

for the same n-bit addition, metrics with the highest

Single Cuccaro and VBE Adder Overall Metric

circuit depth, size, width (log scale)

~==- VBE Adder Depth (Standard) ~ —— Cuccaro Adder Depth (Standard)
1004 === VBE Adder Depth (Decomposed) —— Cuccaro Adder Depth (Decomposed)
~== VBE Adder Size (Standard) —— Cuccaro Adder Size (Standard)
~==- VBE Adder Size (Decomposed) —— Cuccaro Adder Size (Decomposed)

=== VBE Adder Width — Cuccaro Adder Width

107t

50 100 150 200 250 300
n-bit addition

Fig. 7. Cost comparison of single VBE and Cuccaro
adder
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cost reduction is in the following order: circuit size
(decomposed), depth (standard), depth
(decomposed), and width. Furthermore, as the bit
increases, the cost reduction percentage also shows
a trend of increase. In other words, the efficiency is
more apparent for larger circuits, as presented in
Table 1.

For instance, for a 5-bit addition, the
improvements in terms of width, depth (standard),
depth (decomposed), and size (decomposed) are
around 18, 14, 19, and 35 percent, respectively,
whereas for a 6-bit addition, the number scales to
around 21, 24, 22, and 38 percent, respectively.
Note that above 100-bit addition, the percentage of
increase becomes more gentle; for 300-bit addition,
the number stays around 25, 33, 26, and 41 percent,
respectively.

Nevertheless, in terms of size (standard), VBE
adder shows a lower cost. This is because we use
the 3-CNOT version of UMA gate in Cuccaro adder
to achieve more parallelization. Additionally, readers
may notice that the performance difference in the
standard compilation and decomposed version seems
contradictory. However, there is an explanation for
this occurrence; that is because VBE employs more
Toffoli gates than Cuccaro adder. In a decomposed
version, the compiler unrolls the instruction to a
lower level. While CNOT gates are native to
superconducting circuits as the base architecture of
Qiskit quantum simulator, each Toffoli gate is
dissected into a series of Hadamard and T gates,
resulting in a higher gate count in the real

implementation.

Table 1. Percentage of Improvement of Cuccaro Adder
over VBE Adder for Selected Values of n

Improvement of Cuccaro Adder over VBE Adder (%)
n Width Depth Depth Size Size
(Standard) (Decomposed)| (Standard) |(Decomposed)

5 18.18% 13.79% 18.92% -24.39% 34.81%
10 | 21.43% 23.73% 22.44% -17.44% 38.35%
50 24.26% 31.44% 25.15% -12.33% 40.93%
100 | 24.63% 32.39% 25.48% -11.72% 41.23%
150 | 24.75% 32.70% 25.59% -11.52% 41.34%
200 | 24.81% 32.86% 25.64% -11.41% 41.39%
250 | 24.85% 32.96% 25.67% -11.35% 41.42%
300 | 24.88% 33.02% 25.70% -11.31% 41.44%

5.3 Evaluation of VBE and Cuccaro Adder in
Shor’s Algorithm

Regarding the overall cost in Shor’s algorithm,
we separate the figures for different metrics for ease
of reading. Additionally, we do not employ a
logarithmic scale since the xaxis only covers a
small value (only up to 16-bit modulus). The
comparison of depth, width, and size of Shor’s
algorithm utilizing VBE and Cuccaro adder is shown
in Fig. 8, Fig. 9, and Fig. 10, respectively, and the
percentage of overall performance is presented in
Table 2. Note that for this subsection, width and
size refer to the decomposed version rather than the
standard version.

As shown in the figures, different adders yield a
considerable cost difference in Shor’s algorithm,
even though we only use small bitlengths for our
experiment. In terms of circuit depth and width,

Cuccaro adder gives lower cost, which is consistent

Shor's Algorithm Circuit Depth

=== VBE Adder ,/
/
% 40 4 Cuccaro Adder %
kel /
c /
& ,
] ,
2 J
530 7
£ -~
= ,
;g. 20 ,/
.
g
= -
£ -
£ 104 -~
s} s
4 6 8 10 12 14 16

n-bit Shor

Fig. 8. Cost comparison of single VBE and Cuccaro
adder

Shor's Algorithm Circuit Width
160 =

--- VBE Adder 7
140 4 Cuccaro Adder Prias
-

120 e
£ 1004 g
3 -
2 -~
£ 804 -7
= -
e P
5 60 L=

40

204

4 6 8 10 12 14 16
n-bit Shor

Fig. 9. Cost comparison of single VBE and Cuccaro
adder
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Table 2. Improvement of Shor’s Algorithm using Cuccaro
Adder over VBE Adder, from n=3 to n=16

Improvement of Shor's
First Algorithm using Cuccaro
Modulus . Adder over VBE Adder (%)
n N) Resgilzs:er -
Width (De?oem’?a?:ed) (Decfr::aeosed)
4 15 8 6.98% 6.66% | -26.69%
5 21 9 8.00% 11.54% | -23.97%
6 33 11 8.33% 15.11% | -21.99%
7 87 13 8.57% 17.79% | -20.08%
8 177 15 8.75% 19.66% | -19.11%
9 291 17 8.89% | 21.06% | -18.26%
10 537 19 9.00% | 22.41% | -17.63%
11 1041 21 9.09% | 23.28% | -17.12%
12 2049 23 9.17% | 24.13% | -16.74%
13 6393 26 9.02% | 24.75% | -15.98%
14 8193 27 9.29% | 25.36% | -16.01%
15 18339 29 9.33% | 25.84% | -15.42%
16 34761 31 9.38% | 26.26% | -15.18%

with what we have previously seen in the single
adder implementation.

As presented in Fig. 8, the difference in depth is
considerably high. For instance, in the 16-bit case,
the depth of Shor’s algorithm employing VBE adder
is around 472 thousand while it is only 348
thousand when Cuccaro adder is used, or around 26
percent. Additionally, as shown in Fig. 9, an
improvement of around 9 percent (145 as opposed
to 160) is achieved in terms of width. Even though
the level of improvement is not as high as that of
the depth, circuit width is also a scarce resource
because it translates to the required number of
logical qubits to run a quantum algorithm, and its
reduction is not as easy. Hence, 9 percent of
improvement can be considered as significant.

However, in terms of circuit size, it is the VBE
adder that yields a lower cost, as shown in Fig. 9.
The reason why the result is different from that of
the standalone adder in the previous subsection can
be because the decomposition is only into one layer
below. Since the adder is incorporated into a larger
circuit (i.e., modular adder in our implementation),
the circuit’s unrolling may still follow the adder’s
standard compilation.

Nevertheless, inferring from Table 2, as the
circuit enlarges, the results seem to be in favor of
the Cuccaro adder. Not only the circuit efficiency in

terms of width and depth increases, but also the size
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Fig. 10. Circuit size comparison of Shor’s algorithm
employing VBE and Cuccaro adder

gap becomes lower. For the 4-bit Shor, the cost
improvement in width, depth, and size is around 7,
7, and -26 percent, respectively, while for the
16-bit, it leaps to around 9, 26, and -15,
respectively. Hence, in Shor’s algorithm’s real use
(e.g., to crack RSA-2048), a much larger cost
reduction can be acquired by equipping the suitable
addition circuit.

VI. Possibility of Improvements

6.1 Improvements in Literature
To reduce the cost -or to improve the
performance - of an adder, one may experiment and
analyze from the existing quantum addition circuit.
In the literature, there have also been various
proposals that aim to reduce the integer addition cost
in one (or more) aspects of performance metrics.
One example is the adder by Takahashi er al/'”,
also known as the TTK adder, which reduces the
qubit size and, to date, is known as the adder with
the lowest width. Gidney er all'®, proposes a
modification to Cuccaro adder with the primary aim
to reduce the number of T gates in one stage (also
called the “T-depth”), which mainly comes from the
number of Toffoli gates in the circuit. This proposal,
also referred to as the CDKMG adder, utilizes 4n T
gates, but with the tradeoff of n auxiliary qubits.
Additionally, a paper by Draper et al®”, targets on
T-depth,
logarithmic depth. The reason why many proposals

reducing the giving a circuit with

focus on reducing the depth is because it describes
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the time complexity of a circuit?!, which is
essential to be minimized since the decoherence time
in the current quantum hardware is still relatively
small.

Another approach to cost reduction is by
considering another gate model as proposed in [22].
The paper discusses the possibility of utilizing Peres
gate, which is relatively well known earlier in the
reversible computing field and has the lowest
quantum cost when decomposed to NCV library
(i.e., the set that comprises {NOT, CNOT, V, VT }
gates). When Clifford+T, i.e., the set of gates
comprises {NOT, CNOT, H, Z, S, St, T, Tt }
becomes a more preferred implementation for a
fault-tolerant library, the discussion of Peres gate
had subsided, but emerges again when Amy et al,
in [23] presents the decomposition of Peres gate to
Clifford+T library. The operation of Peres gate is
illustrated in Fig. 11.

In [22], the possibility of constructing the
Cuccaro adder based on the gates in Fig. 11 is
discussed. Specifically, the aim is to reduce the
circuit’s depth by replacing a particular part of the
Cuccaro adder by Peres gate and negative-control
Toffoli gate as illustrated in Fig. 12. Essentially, a
consecutive Toffoli-CNOT gate is replaced by the
decomposition of Peres gate to Clifford+T library,

while the commuting X-Toffoli-X gate is replaced

A P=A
= B Q=ADB
NV c—p R=AB&®C

Fig. 11. Operation of Peres Gate

gates commute

aj—1

|
|
b —e—{x

a;

@)

:

N
v

| 6
|
?

L
v

Peres Negative-control
Gate Toffoli Gate

Fig. 12. Modification of Cuccaro adder to reduce depth
in [22]

by the decomposition of negative-control Toffoli as
shown in Fig. 12.

For the work in [22], a simulation is done in
ETRI Q-Crypton quantum simulator. This simulator
supports a resource estimation, namely the “DNA
Analysis”, that provides a relatively more complete
list of performance metrics, ranging from algorithm
level (namely, “Compile level”) to the fault-tolerant
quantum computation (“FTQC level”). In [22], the
authors show the performance comparison for 3-bit
addition, which yields improvements ranging from 3
to 40 percent. As for larger qubits, the simulation
and resource estimation are run for 3 to 10-bit
addition, which also shows a considerable cost
saving.

6.2 Cost Reduction of Modified Cuccaro
Adder in Q-Crypton Quantum Simulator

We are inspired by the work of [22] to continue
investigating the cost reduction of their modified
Cuccaro adder with the original one by incorporating
each of them into the Shor’s algorithm circuit. For
this experiment, instead of using Qiskit like the
experiment in the previous section, we instead
utilize Q-crypton quantum simulator to acquire a
more complete cost estimation.

The script of Shor’s algorithm is written by us,
which yields the FTQC level’s cost as presented in
Table 3 and Table 4 for the original Cuccaro and

the modified version, respectively. Note that the

Table 3. Performance metric of Cuccaro adder in Shor’s
algorithm, from 7=3 to n=10

Cuccaro Adder (Original)
Bits to factor 4 5 | 6 | 7 | s 9 10
FTQC Level
Algorithm Qubits 24 29 34 39| 44 48 54|
Circuit Depth 14,114 27,118 46,078 72,422 107,206 152,158 207,626
Computing Time 5417| 104.25] 177.32[ 27890] 41310 586.59]  800.73)
KQ 338,736| 786,422| 1,566,652|2,824,458(4,717,064|7,455,742| 11,211,804
Logical Gates 27,675 52,805 89,900/ 141,300 209,345 296,375 404,730
Physical Qubits 24 29 34 39 44 49 54

Table 4. Performance metric of modified Cuccaro adder
in Shor’s algorithm, from 7=3 to n=10

Cuccaro Adder (Improved Version)
Bits to factor 4 5 | 6 | 7 | 8 ) 10
FTQC Level

Algorithm Qubits 24 29 34 39 44 49 54
Circuit Depth 13,474 25868 43938 69,012] 102,086 144,868 197,64
Computing Time 51.32] 9834 166.80| 261.71| 386.83] 54865  748.18
KQ 323,376| 750,172 1,493,892( 2,691.468[ 4.491,784( 7,098,532 10,672,884
Logical Gates 26,235] 49,805] 84,500 132,480 195,905 276,935] 377,730
Physical Qubits 24 29 34 39 44 49 54
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result for Compile level is omitted for brevity since
it is also reflected on the FTQC level. Furthermore,
there may be differences between resource estimates
in Q-Crypton and Qiskit due to different settings,
compilation, and decomposition methods between
the two simulators.

As shown in Table 5, the modified Cuccaro adder
gives a cost reduction over the original one, ranging
from 4 to 6 percent when employed in Shor’s
algorithm. Even though the difference is less evident
when discussed in percentage compared to between
VBE and Cuccaro adder, from Table 3 and Table 4,
the difference in values is quite large, such as in the
circuit depth. Hence, the use of an improved adder
may indeed yield a significant cost saving for Shor’s
algorithm.

Table 5. Improvement of the modified compared to
original Cuccaro adder in Shor’s algorithm, from »n=3 to
=10

Increase over Standard Version)
Bits to factor 4 5 | e [ 7 8 | o 10
FTQC Level

Algorithm Qubits. - E - E 5
Circuit Depth 453%|  461%| 464%| 4.71%| 4.78%| 479%|  4.81%)
Computing Time 5.26%| 567%| 593%| 6.16%| 6.36%| 6.47%|  6.56%)
KQ 453%|  461%| 464%| 471%| 478%| 479%|  4.81%)
Logical Gates 5.20%|  568%| 6.01%| 6.24%| 6.42%| 6.56%|  6.67%)
Physical Qubits - - - - - -

VI. Conclusion

In this paper, we have discussed two well-known
variants of quantum ripple-carry adders, namely the
VBE and Cuccaro adder. We started by elaborating
on the roles of adders and their part in the
construction of larger circuit, with modular
exponentiation for Shor’s algorithm as the example.
From our experiment in Qiskit, it has been shown
that Cuccaro adder outperforms the VBE adder for
standalone use for almost all metric, whereas for the
use in Shor’s algorithm, it excels than VBE in terms
of circuit depth and width, but with a tradeoff of a
larger circuit size for our current implementation.
However, it should be noted that there is no
one-size-fits-all option; choosing which adder to use
in general will heavily depend on the predetermined
cost metrics that one wants to achieve. Thus, we
also discussed the recent proposals in the quantum
adders to reduce some specific performance metrics,
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along with the example of improvement by utilizing
Peres gate and negative-control Toffoli gate for use
in Shor’s algorithm, evaluated using Q-Crypton
simulator. To conclude, the seemingly small
improvement in adders yields a considerable cost
reduction for Shor’s algorithm circuit and, thus, shall

always be pursued.
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