
논문 21-46-09-20 The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09
https://doi.org/10.7840/kics.2021.46.9.1507

1507

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology

Research Center) support program(IITP-2021-2017-0-01633) supervised by the IITP(Institute for Information & Communications

Technology Planning & Evaluation).

w First Author : Van-Cuong Le, Department of Information Communication Convergence, Soongsil University, Seoul, South Korea,

cuonglv@ssu.ac.kr, 학생회원

° Corresponding Author : Myungsik Yoo, School of Electronic Engineering, Soongsil University, Seoul, South Korea,

myoo@ssu.ac.kr, 종신회원

논문번호：202106-130-D-RN, Received June 10, 2021; Revised June 17, 2021; Accepted June 17, 2021

Edge 컴퓨팅 환경을 위한 경량 KubeEdge 툴

레 반끄엉w, 유 명 식°

Lightweight KubeEdge Tool for Edge Computing Environments

Van-Cuong Lew, Myungsik Yoo°

요 약

지난 10년간 모바일 기기가 급증하면서 짧은 지연시간 내에 처리해야 하는 데이터가 급증했다. 필요한 위치에

가깝게 설계된 에지 컴퓨팅이 이러한 문제를 해결할 것으로 기대된다. 일반적으로 에지 노드는 클라우드 노드보다

적은 자원을 가지고 있다. 따라서 컨테이너 기술은 시스템에 상당한 오버헤드를 주는 가상화 기술보다 더 경쟁력

있는 솔루션으로 간주된다. 컨테이너 관리 및 조정 툴로 각광받는 Kubernetes는 에지 컴퓨팅을 완전히 지원하지

않는다. KubeEdge는 Kubernetes를 기반으로 에지 컴퓨팅에서 컨테이너 기반 애플리케이션 관리가 가능하도록 확

장하였다. KubeEdge 시스템 구축에는 네트워킹 및 운영 체제에 대한 복잡한 지식이 필요하다. 본 논문에서는

KubeEdge 시스템의 구성에 필요한 절차들에 대한 복잡성을 최소화할 수 있는 경량 KubeEdge 툴 제공을 목표로

한다. 구현 및 평가를 통해 제안된 툴이 KubeEdge 시스템을 빠르고 효과적으로 구축할 수 있음을 보여주었다.

Key Words : NFV, Container, Edge Computing, cgroup, KubeEdge

ABSTRACT

Booming mobile devices in the past decade eventually led to massive data that needed to be processed at

low latency. We expect edge computing placed closer to the required location will satisfy the challenges. Each

edge node typically has resources lower than a cloud node. Hence, containerization is considered a more

competitive solution than virtualization, which has a significant overhead on systems. Kubernetes, leading as a

containerized management and orchestration tool, do not fully support edge computing. KubeEdge extends

native containerized application orchestration capability into edge computing based on Kubernetes. Deploying a

KubeEdge system requires complex knowledge about networking and operating system. This study aims to

provide a lightweight KubeEdge tool to minimize complexity of configuration of KubeEdge system. By

implementing and evaluating, we show that the proposed tool can deploy KubeEdge in a fast and effective

way.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1508

Ⅰ. Introduction

As the number of mobile devices rapidly

increases, there is an increasing tendency for service

providers to apply edge computing to adapt to

massive data along with a low latency requirement[1]

when rolling out their services. Application

developers, along with hyper-scale cloud providers

(Microsoft Azure, Amazon Web Service, etc.), are

betting on Kubernetes at the edge with their

open-source projects like KubeEdge[2], Akri[3], and

Google Anthos[4]. When companies want to have a

consistent approach to managing workloads at the

edge with Kubernetes[5], different challenges

appear[2-4].

KubeEdge allows operators to deploy and manage

their services as containerizations at the edge side

through a centralization management interface. To

deploy a service in production on the KubeEdge

system, it has to be designed and evaluated on a

KubeEdge system. Therefore, we need a quick

solution for the configuration of a KubeEdge system

to accelerate service development. KubeEdge is

extended from Kubernetes that is a leading

containerized orchestration but still hard to deploy.

Besides, KubeEdge is also work in progress[6].

Hence, it requires a complex configuration process

along with prerequisite details that are not

mentioned in the official document[2]. This paper

aims to provide a tool to automatically configure a

KubeEdge system for an edge computing

environment.

The rest of this paper is organized as follows.

Section II describes the background on containerized

technologies and KubeEdge. A difficulty when

deploying a KubeEdge system and flowchart details

of the proposed tool are explained in Section III.

Section IV describes the detail of the experiment.

Finally, section V concludes the paper.

Ⅱ. Background

2.1 Container Runtime Interface
Container Runtime Interface (CRI) is a plugin

interface. It gives kubelet the ability to use a variety

of container runtimes. Besides, Kubernetes plugins

execute and observe over containers using CRI. CRI

includes gRPC API, protocol buffers, and libraries[7].

Open Container Initiative (OCI)[8] runtime is

“low-level” runtimes. It focuses on managing the

container lifecycle and is not required to do much

else. Low-level runtimes create and run “the

container”.

Containerd is the default CRI of the Docker

engine. Because containerd is popular, containerd is

an industry-standard. This runtime container uses

runc, the reference implementation of the OCI

runtime specification[8]. It provides the minimum set

of functionality to run containers and manages

images and snapshots on a node. It runs and

terminates containers by delegating execution tasks

to the OCI runtime. Containerd has to the following

actions to run a new container:

∙Create a new container from a given OCI image;

∙Create a new task in the container context;

∙Start the task

CRI-O is a container runtime built to provide a

link between the high-level Kubernetes CRI and

OCI runtimes[9]. It is an alternative solution for

containerd. RedHat has developed and maintained it.

The typical life cycle of the interaction with CRI-O

is almost the same as containerd over the CRI

endpoint[10].

Because containerd, which is reliable and popular

with Docker, is an industry-standard container

runtime, this study uses containerd as a default

container runtime.

2.2 Container Orchestration Tools
Containers can be created and managed using

container runtime. However, we need tools that

manage and orchestrate these containers across a

cluster system. They are required because usually a

single service comprises many containers working

together. Thus, container orchestration includes the

management of a life cycle of container.

There are various container orchestration tools

available such as Kubernetes, Apache Mesos[11],

Docker Swarm[12], etc. They provide different

www.dbpia.co.kr



논문 / Edge 컴퓨팅 환경을 위한 경량 KubeEdge 툴

1509

frameworks for managing and orchestrating

containers at scale. Containers are deployed on

hosts, usually in replicated groups called pods.

Container orchestration tools schedule the

deployment. The most appropriate host is chosen to

place the container based on predefined constraints

such as idle compute unit, available memory,

network bandwidth, etc. While the container runs on

the host, the container orchestration tool manages

the container's life cycle. Container orchestration

tools can be used in any environment that can run

containers, from personal computers to private cloud

instances running on Amazon Web Services (AWS),

DigitalOcean, etc. Currently, Kubernetes is one of

the leading container orchestration tools.

All the above container orchestration tools do not

fully support edge computing. KubeEdge fully

supports edge computing, but it needs some effort to

make it easier to use.

2.3 Docker
Docker engine is an open-source containerization

platform based on Linux containers for building and

containerizing the application[13]. It enlarges current

container technology by providing lightweight

containers and API for managing container images

of multi-container applications. Docker can help us

to deploy an application regardless of environment

settings from one environment to another one.

Besides, it can create any network functions in

service function chains as a container.

Docker container relies on the kernel of the host

running the docker engine[13]. It only separates the

user space at the operating system level and

consumes resources when running an application.

Basically, a container consists of processes isolated

from the rest by namespaces. The containers running

in Docker share the host OS kernel. It uses Linux

Kernel features such as storage, networking, and

control groups to build containers on top of an

operating system. Docker encloses an application’s

software into a package with everything it needs to

run like OS, application code, Run-time, system

tools, libraries, etc. Hence, an application can run on

any other Linux machine regardless of any

customization configurations. Additionally, it adds a

read-write file system over the read-only file system

of the Docker image to create a Docker container.

The proposed tool does not install a completed

Docker engine. It just installs containerd that is

developed by Docker and now by Cloud Native

Computing Foundation (CNCF).

2.4 KubeEdge
KubeEdge is an open-source edge computing

platform designed to extend Kubernetes

containerized orchestration capabilities to hosts at

edge[2]. It supports networking application

deployment and metadata synchronization between

cloud and edge devices. Compared with Kubernetes,

orchestration capabilities are separated from edge

nodes to the cloudcore. Cloudcore is the extended

Kubernetes controller that controls edge nodes and

pods’ metadata that helps data being sent to

identified edge nodes. Meanwhile, workloads are

handled by the edge node.

As shown in Figure 1, KubeEdge consists of two

parts.

Part1-At the cloud side:

∙EdgeController is responsible for connections

between kube-apiserver and edge nodes. It has

the ability to register the edge node with the

kube-apiserver.

∙DeviceController manages the device by

describing device metadata/status and

synchronizing these device updates between edge

and cloud.

∙Cloud Hub is one part of cloudcore and provides

communication ability between EdgeController

and Edge nodes. It supports both QUIC protocol

and web-socket protocol.

Part 2-At the edge side:

∙Edge Hub interacts with the cloud-side for edge

computing. It comprises reporting edge-side status

to the cloud-side, synchronizing resource updates

between them.

∙EdgeD or edge node is used to operate Pods on

the KubeEdge system. Every node must have a

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1510

Fig. 1. KubeEdge architecture

Kubelet that is an agent to operate containers. It

has the ability to register the node with the

apiserver via EdgeHub and CloudHub. Kubelet

receives tasks to be performed at its node like

start, stop, and terminate an application container

by Kubernetes master (API Server). Besides, it

also sends back node and container status to the

Kubernetes master.

∙EventBus is an MQTT client that interacts with

MQTT servers, offering pub/sub capabilities to

other components.

∙DeviceTwin is responsible for storing the device

states.

∙MetaManager is the message processor between

the Edged and Edge hub.

∙Servicebus acts as sending/receiving messages

from applications.

Ⅲ. Practical Implementation

3.1 Cgroup driver
Cgroups are a mechanism for controlling certain

subsystems in the kernel, which include devices,

CPU, RAM, network access, and so on. Container

runtimes on Linux also rely on cgroups. Cgroup

allocates a set of specific resources to an

application. It also allows container runtime such as

containerd and cri-o to distribute available hardware

resources to containers and optionally execute

limitations and constraints[14].

The hosts running on Linux are designated with

the systemd as a cgroup driver. On the other hand,

the container runtime and the kubelet use cgroupfs

as its cgroup driver. When using systemd and

cgroupfs, different cgroup drivers will manage the

same resources on a host together. In industry,

people have reported that the host uses the systemd,

and container runtime uses the cgroupfs to manage

the host processes' resources, leading to unstable

under resource pressure[14]. Figure 2 shows how to

unify the cgroup driver on one system by setting the

cgroup driver used by container runtime to the

systemd. It needs to perform on a node before it

joins a KuberEdge system[14].

www.dbpia.co.kr



논문 / Edge 컴퓨팅 환경을 위한 경량 KubeEdge 툴

1511

Fig. 3. The flowchart of the proposed tool

Fig. 2. The problem of cgroup drivers and solution

3.2 Implementation
All steps for setting a KubeEdge system are

integrated into a proposed script tool. Additionally,

the tool covers some of the prerequisites not

mentioned in the KubeEdge official documents.

Appropriate functions will execute on the

corresponding part of a KubeEdge system. We

describe step by step to deploy a KubeEdge system

by the proposed tool as shown in Figure 3:

For preparing:

∙The proposed tool uses the Kernel-based Virtual

Machine (KVM)[15] tool built-in Linux kernel that

provides a virtualization package for the kernel to

behave as a hypervisor to create Virtual Machines

(VM) (1).

∙After creating VMs, the proposed tool sets up at

least two LANs inside the KVM. One LAN is for

nodes shaping a Kubernetes (k8s) cluster at the

cloud side of a KuberEdge system (2). The other

LAN connects the Kubernetes cluster (cloudcore)

at the cloud side and the edge node of the

KubeEdge system. The tool then adds network

interfaces to respective VMs. On the cloud side,

the k8s master node of the k8s cluster is added

the number of network interfaces respective to the

number of the edge sides. The tool also opens

access on two ports, 10000 and 10002, in the

cloud side for edge node connections.

∙Kubernetes requires to disable swap memory on

any cluster nodes to prevent the Kube-scheduler

from assigning a Pod to a node that has run out

of CPU/memory or reached its designated

CPU/memory limit. Since KubeEdge is based on

Kubernetes, the proposed tool disables swap

memory for all nodes (3).

∙All nodes in the system install containerd as the

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1512

Fig. 4. Network design for experiment

Entity Details

Server hardware

Intel(R) Xeon(R) CPU

E3-1240 V3 @ 3.40GHz, 8

cores

Operation System Ubuntu 18.04 LTS, 64 bit

Software Linux KVM

VM1, VM2, edge

nodes

2 cores, 4 GB memory,

Ubuntu 16.04

Table 1. Specifications of the Experiment

Fig. 5. Experiment results of KubeEdge deployment

default container runtime by the proposed tool

(4). Users may change to use their favorite

container runtime in the proposed tool.

∙As mentioned in the 3.1 section, each of the

nodes in the system needs to set its container

runtime to use the systemd as a cgroup driver by

the proposed tool (5).

For cloud side:

∙The proposed tool installs K8s (6).

∙Then the proposed tool installs KubeEdge (7).

∙After that, the proposed tool sends the command

to set the master node and generate a token (8).

∙Finally, the proposed tool gets the master node

token (9).

For edge side:

∙The proposed tool installs KubeEdge on the node

(10).

∙Then the proposed tool sends the master node

token to the worker node (11).

∙Finally, the worker node uses the token to join

master node to form a cluster (12).

Ⅳ. Experiment

The experiment was performed on a server that

has the system configuration as shown in Table 1.

Figure 4 describes nodes in the edge environment

built by the proposed tool. On the cloud side, a

Kubernetes cluster (cloudcore) runs on top of two

virtual machines (VMs), one plays Kubernetes

master node, and the other is Kubernetes worker

node. The connections between nodes on the cloud

side are provided by a LAN (192.168.23.0/24). On

the edge side, two VMs play as edge Kubernetes

worker nodes, which run on their own LAN. The

connection between the cloudcore and edge nodes

uses different LANs (192.168.24.0/30 and

192.168.24.8/30). All LANs are created using the

KVM. Figure 5 shows the result of the experiment

after the tool executed.

To prove that the tool helps reduce the

complexity of deployment and the time to deploy

KubeEdge, we mainly focus on measuring the

configuration time and installation time of the whole

KubeEdge cluster. Configuration time is the delay to

configure the requirements of KubeEdge. It consists

of (1), (2), (3), (4), (5) in Figure 3. Installation time

has different meanings in the two cases. For cloud

side, installation time is the delay to install K8s,

KubeEdge and generate a master node token. It

consists of (6), (7), (8), (9) in Figure 3. For edge

side, installation time is the delay to install

www.dbpia.co.kr



논문 / Edge 컴퓨팅 환경을 위한 경량 KubeEdge 툴

1513

KubeEdge and use the master node token to form a

cluster. It consists of (10), (11), (12) in Figure 3.

Table 2 shows the configuration time and the

installation time for each node. Without the

proposed tool, if users want to deploy a KubeEdge

system, they must manually perform all setting

steps, which leads to misconfiguration and causing

wastes of time and resources. The proposed tool

makes the deployment of a KubeEdge system easier

and faster.

No. Entity
Configuration

time

Installation

time

1
Kubernetes

cluster
242s 157s

2 Edge Node 1 165s 122s

3 Edge Node 2 211s 118s

Table 2. Implementation Results

Ⅴ. Conclusion

In this study, we presented KubeEdge architecture

and difficulties when deploying a KubeEdge system

in the laboratory environment. It showed that

Kubernetes could manage remote edge nodes and

orchestrate edge applications into the edge with only

one API. KubeEdge offers significant command-line

operations using kubectl that is configured to work

with KubeEdge. One can deploy a KubeEdge in a

fast and efficient way with the proposed tool, as

shown in the experiment.

References

[1] Y.-Y. Shih, H.-P. Lin, A.-C. Pang, C.-C.

Chuang, and C.-T. Chou, “An NFV-based

service framework for IoT applications in

edge computing environments,” IEEE Trans.

Netw. and Serv. Manag., vol. 16, no. 4, Dec.

2019.

[2] KubeEdge, [Online] Available: https://kubeedg

e.io.

[3] Akri, [Online] Available: https://github.com/dei

slabs/akri.

[4] Google Anthos, [Online] Available: https://clou

d.google.com/anthos.

[5] Kubernetes, [Online] Available: https://kuberne

tes.

[6] Y. Xiong, Y. Sun, L. Xing, and Y. Huang,

“Extend cloud to edge with KubeEdge,” 2018

IEEE/ACM SEC, pp. 373-377, Seattle, WA,

USA, 2018, doi: 10.1109/SEC.2018.00048.

[7] L. Espe, A. Jindal, V. Podolskiy, and M.

Gerndt, “Performance evaluation of container

runtimes,” in Proc. 10th Int. Conf. Cloud

Comput. and Serv. Sci. (CLOSER 2020), pp.

273-281, pp. 273-281, 2020.

[8] S. Fu, J. Liu, X. Chu, and Y. Hu, “Toward a

standard interface for cloud providers: The

container as the narrow waist,” IEEE Internet

Computing, vol. 20, no. 2, pp. 66-71,

Mar.-Apr. Feb. 2016.

[9] CRI-O, [Online] Available: https://cri-o.io.

[10] Introduction crun [Online] Available: https://w

ww.redhat.com/sysadmin/introduction-crun.

[11] Apache Mesos [Online] Available: http://meso

s.apache.org.

[12] Docker Swarm [Online] Available: https://doc

s.docker.com/engine/swarm.

[13] Docker, [Online] Available: https://www.docke

r.com.

[14] Cgroup Driver, [Online] Available: https://kub

ernetes.io/docs/setup/production-environment/c

ontainer-runtimes.

[15] Kernel Virtual Machine, [Online] Available: ht

tps://www.linux-kvm.org.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-09 Vol.46 No.09

1514

레 반끄엉 (Van-Cuong Le)

Van-Cuong Le received the

B.Eng. degree in software

engineering from the

University of Science &

Technology, University of Da

Nang, Da Nang City,

Vietnam, in 2018. He is

currently pursuing a master’s degree with Soongsil

University. His research interests include

Software-defined Network/Network Function

Virtualization.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

[ORCID:0000-0002-5578-6931]

www.dbpia.co.kr


	Lightweight KubeEdge Tool for Edge Computing Environments
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Background
	Ⅲ. Practical Implementation
	Ⅳ. Experiment
	Ⅴ. Conclusion
	References


