
논문 21-46-11-22 The Journal of Korean Institute of Communications and Information Sciences '21-11 Vol.46 No.11
https://doi.org/10.7840/kics.2021.46.11.1958

1958

※ This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research

Center) support program(IITP-2021-2017-0-01633) supervised by the IITP(Institute for Information & Communications Technology

Planning & Evaluation).

w First Author : Department of Information Communication Convergence, Soongsil University, Seoul, South Korea,

cuonglv@soongsil.ac.kr

° Corresponding Author : School of Electronic Engineering, Soongsil University, Seoul, South Korea, myoo@ssu.ac.kr, 정회원

논문번호：202107-177-D-RN, Received July 21, 2021; Revised July 31, 2021; Accepted July 31, 2021

사물인터넷 환경을 위한 경량 K3S 도구

레 반끄엉w, 유 명 식°

Lightweight K3S Tool for Internet of Things Environments

Van-Cuong Lew, Myungsik Yoo°

요 약

사물 인터넷(IoT)은 스마트홈, 환경 모니터링 및 의료 등 다양한 분야에 빠르게 적용되고 있다. 그 결과 점점

더 많은 IoT 디바이스가 다양한 사용 사례에 구축되고 있다. 일반적으로 IoT(Internet of Things) 장치들은 포설된

지역의 Rasberry Pi 및 NVIDIA Jetson Nano와 같은 소형 컴퓨터로 관리된다. 최근 들어 컨테이너 기술은 컨테이

너 관리 툴인 Kubernetes(K8s)와 함께 애플리케이션을 효율적으로 설치하고 관리하기 위한 가상화 기술로 부상하

고 있다. 하지만 K8s는 자원이 제한된 IoT 기기에 설치되어 운영되기 어렵다. 따라서 경량 Kubernetes인 K3s는

자원이 제한된 장치용으로 특별히 설계되었다. IoT 디바이스는 네트워크 구성 및 OS(운영 체제) 설정과 같은 K3s

클러스터의 초기화 및 가입에 대한 K3s 요구 사항을 충족해야 한다. 그러나 K3s 공식 문서에서는 이러한 요구

사항 구성을 지원하고 있지 않다. 본 논문에서는 요구사항 구성 및 K3s 클러스터 구현을 자동화할 수 있는 툴을

제안한다. 구현 및 평가를 통하여 제안된 툴이 빠르고 효과적으로 K3s를 설치할 수 있음을 보여주고자 한다.

Key Words : container, internet of things, iptables, kubernetes, k3s

ABSTRACT

The Internet of Things (IoT) is rapidly applying to many different domains, including smart homes,

environmental monitoring and health care. As a result, more and more IoT devices are being deployed in a

variety of use cases. Typically, fleets of Internet of Things (IoT) devices need to be managed by a small

computer such as Raspberry Pi and NVIDIA Jetson Nano in the deployed region. In recent years, the

containerized technology is emerging as an efficient virtualized technology for launching and managing

applications along with Kubernetes (K8s), the leading containerized orchestration tool. But native K8s is heavy

for the IoT devices with limited resources. Hence, K3s, a lightweight Kubernetes, is specially designed for

resource-limited devices by Rancher. An IoT device has to satisfy the requirements of K3s for initialing and

joining to a K3s cluster, such as network configurations and settings on the operating system (OS). However,

the K3s official documents do not support configuring these requirements. We propose a tool to automate

configuring requirements and deploying a K3s cluster. By implementing and evaluating, we show that the

proposed tool can deploy K3s in a fast and effective way.

www.dbpia.co.kr



논문 /사물인터넷 환경을 위한 경량 K3S 도구

1959

Ⅰ. Introduction

Nowadays, more and more sensors, actuators,

gadgets, called IoT Devices, have been used to

support human activities in life. In addition, more

and more applications have been developed to

process the massive data generated by the millions

of IoT devices[1,2]. Typically, the applications are

designed to process raw data at the local before

sending the data to the cloud for processing to get

the final result[3]. To manage and orchestrate

hundreds to thousands of containerized applications

in a cluster, Kubernetes (K8s) is utilized[4]. But

Kubernetes is so heavy for the IoT devices with

limited resources[5]. Rancher K3s[6], which is based

on K8s, was proposed for the devices with limited

resources in the IoT environment to provide the

ability similar to K8s. A node needs to satisfy the

K3s configuration requirements such as enabling

iptables for network configuration, enabling cgroups

for resources management, disabling swap area on

the node, and configuring container runtime for

executing containers[7]. By default, users have to

configure and install K3s manually. It will cost users

a lot of time and effort, and cause errors in

configurations. This paper proposes a tool to

automate configuring requirements such as iptables,

cgroups, installing K3s on IoT devices, and

clustering IoT devices.

The rest of this paper is structured as follows.

Section II describes the background on containerized

technologies and K3s. Details of the proposed tool

are explained in Section III. Section IV describes the

detail of the experiment. Finally, Section V

concludes the paper.

Ⅱ. Background

2.1 Container Runtime Interface
A container runtime is an application that

manages container images and executes containers

on a node. There are many container runtimes such

as containerd[8], cri-o[9]. Containerd is the default

Container Runtime of the Docker. It uses runc, the

reference implementation of the Open Container

Initiative (OCI) specification[10]. It provides the

minimum set of functionality to run containers and

manages images and snapshots on a node. It runs

and terminates containers by delegating execution

tasks to the OCI runtime. Containerd is an

industry-standard container runtime and also is the

default container runtime in K3s because containerd

uses less resources than other container runtimes.

2.2 Kubernetes
Kubernetes streamlines the process of

implementing multi-container applications. Using

Kubernetes, operators can adjust each container of

an application exactly how much resource is

allocated for each container and combine different

containers within a single Pod. Kubernetes then

handles the process of rolling them out, maintaining

them, and ensuring that all the components remain

in synchronization[4].

A Kubernetes cluster has at least one master and

multiple worker nodes. A set of master nodes called

a control plane is the management layer of

Kubernetes. Basically, the control plane contains a

Kubernetes API server providing the Kubernetes

API. Every communication between Kubernetes

components is through an API server. The API

server communicates with Etcd, a distributed

key-value database via gRPC protocol that is an

open-source remote procedure proposed by Google.

The API server stores metadata of the API objects

in Etcd. All resources in a Kubernetes cluster are

presented as API objects. The other part of the

control plane is the Kube-controller-manager, which

consists of many sub-controllers. Each sub-controller

monitors different types of resource objects such as

Pod, service, etc. Then it tries to synchronize the

current state of the resource object closer to the

desired state. In K8s, state is defined as a temporal

property of a resource object. Finally, the control

plane contains a scheduler, which is responsible for

scheduling the application pods to the appropriate

nodes.

In an IoT environment, the devices have limited

resources, so native K8s cannot be installed on the

devices.

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-11 Vol.46 No.11

1960

Fig. 1. The K3s architecture

2.3 K3s
Rancher K3s[6] is a highly available, certified

lightweight Kubernetes distribution designed for

applications in unattended, resource-constrained,

remote locations or inside IoT appliances. It fully

adheres to K8s principles, contains all essential

components by default, and targets a fast, simple,

and efficient way to provide a highly available and

fault-tolerant cluster to a set of nodes. The

architecture of K3s is shown in Figure 1[11].

For the master node:

∙The API server validates and manages the

components of the cluster, such as pods,

replication controllers, and services.

∙The controller manager is responsible for

watching and sharing the state of the cluster and

adjusting the state in a cluster to meet the desired

state.

∙The scheduler finds the created and unscheduled

pods to be assigned to nodes based on the

constraints and available resources.

∙K3s support many databases such as etcd3[12],

MySQL[13], Postgres[14], and SQLite3[15] instead of

etcd, making K3s different from other lightweight

Kubernetes distributions[16]. It is responsible for

storing the state of applications deploying in a

K3s cluster. Especially, K3s also provides an

embedded SQLite database, which is a lower

memory footprint and is simple to operate than

etcd.

∙The Tunnel Proxy is responsible for

communication inside a cluster. Commands from

the K3s master are sent to the K3s worker and

the state of the K3s worker node also is reported

to the K3s master through the Tunnel Proxy.

For the worker node:

∙The kube-proxy is a network proxy and maintains

network rules on nodes. The kube-proxy's role is

load balancing.

∙Flannel is a very simple overlay network

supporting container-to-container, Pod-to-Pod,

Pod-to-Service, and External-to-Service

communications in a cluster.

∙Tunnel Proxy is responsible for communicating

with the K3s master node.

∙kubelet is an agent that runs on each node of the

cluster. It is directed by the API server of master,

and manages the containers.

Ⅲ. The Proposed Tool

The proposed tool runs on a machine that is

different from the master node or the worker node.

The proposed tool needs to be provided IP addresses

and security keys of all the nodes. The proposed

tool connects to all nodes via a local area network

(LAN), and sends commands through ssh protocol,

www.dbpia.co.kr



논문 /사물인터넷 환경을 위한 경량 K3S 도구

1961

Fig. 2. The connections between the proposed tool and
all of the nodes in a cluster

Fig. 3. The workflow of the proposed tool

Protocol Port Source Entity

tcp 10250
master and

worker
kubelet metric

udp 8470
master and

worker

require only for

Flannel VXLAN

tcp 6443 worker api server

Table 1. List of access ports

as shown in Figure 2.

All steps for setting a K3s cluster are integrated

into the proposed tool. It covers the K3s

configuration requirements such as enabling iptables

for network configuration, enabling cgroups for

resources management, disabling swap area on the

node, and configuring container runtime for

executing containers[7]. These things are not

supported directly by the K3s official documents[19].

Appropriate functions will be executed on the

corresponding node. We describe steps to configure

requirements and install K3s on IoT devices by the

proposed tool as shown in Figure 3.

The proposed tool for creating a bare-metal

cluster is based on Raspberry Pi. It also assumes

that all Raspberry Pi must set up Raspbian Buster as

Operating System.

For all nodes:

∙First of all, the proposed tool enables legacy

iptables on Raspbian instead of nftables that

Raspian Buster uses by default (1). It also opens

access to the list of ports in the master node for

worker node connections, as shown in Table 1.

∙Kubernetes requires to disable swap memory on

any cluster nodes to prevent the Kube-scheduler

from assigning a Pod to a node that has run out

of CPU/memory or reached its designated

CPU/memory limit. Since K3s is based on

Kubernetes, the proposed tool disables swap

memory for all nodes (2).

∙The proposed tool enables cgroups for each node

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-11 Vol.46 No.11

1962

Entity Details

Raspberry Pi

Quad Core 1.2GHz

Broadcom BCM2837 64bit

CPU, 1GB RAM

Operating System (OS)

on the Raspberry Pi
Raspbian Buster ARMhf

Table 2. Specifications of each Raspberry Pi in the
experiment

Entity Details

Server hardware

Intel(R) Xeon(R) CPU

E3-1240 V3 @ 3.40GHz,

8 cores

Server OS Ubuntu 18.04 LTS, 64 bit

Virtualization solution Linux KVM

Resource of the VM
2 cpu cores and 2 GB of

RAM

Table 3. Specification of the Virtual Machine in the
experiment

Fig. 4. Network design for experiment

(3). Typically, operating systems on IoT devices

do not enable cgroup by default.

∙The proposed tool installs containerd as the

default container runtime for all nodes (4).

For the master node:

∙The proposed tool sets up some environment

variables for master node for customization (5).

∙Then the proposed tool installs K3s using the

official K3s installation script (6).

∙After that, the proposed tool sends the command

to set the master node and generate a token (7).

∙Finally, the proposed tool gets the master node

token (8).

For each worker node:

∙The proposed tool adds the URL of K3s master

node to the worker node, which consists of the

master node IP address, respective port, and the

master node token as the environment variables

for joining the K3s cluster (9).

∙Then the proposed tool then installs K3s on the

node (10).

∙After that, the proposed tool sends the master

node token to the worker node (11).

∙Finally, the worker node uses the token to join

master node to form a cluster (12).

Ⅳ. Experiment

The experiment was performed on devices that

have the system configuration, as shown in Table 2

and Table 3.

Figure 4 shows nodes in the K3s cluster in the

IoT environment built by the proposed tool for this

experiment. A virtual machine (VM) is created using

Kernel-based Virtual Machine (KVM), installed

Raspberry Pi Desktop (OS) in the cloud part of the

K3s cluster. The VM role is the master node. Two

Raspberry Pi devices install Raspberry Pi OS as two

worker nodes in the local part of the K3s cluster.

The connections between nodes in the K3s cluster

are provided by a LAN (192.168.24.0/24). We use

bridged network mode for connecting the virtual

network adapter of the VM to the physical network

adapter. The bridged network mode helps network

packets to be sent and received directly from/to

without the virtual network adapter routing.

Therefore, the master node can directly

communicate with two worker nodes in the same

LAN. Figure 5 shows the result of the experiment

after the tool was executed.

To prove that the tool helps reduce the

complexity of deployment and the time to deploy a

www.dbpia.co.kr



논문 /사물인터넷 환경을 위한 경량 K3S 도구

1963

Fig. 5. Experiment results of K3s cluster deployment

K3s cluster, we mainly focus on measuring the

configuration time and installation time of the whole

K3s cluster. Configuration time is the delay to

configure the requirements of K3s. It consists of (1),

(2), (3), (4) in Figure 3. Installation time has

different meanings in the two cases. For master

node, installation time is the delay to install K3s and

generate a master node token. It consists of (5), (6),

(7), (8) in Figure 3. For worker node, installation

time is the delay to install K3s and use the master

node token to form a cluster. It consists of (9), (10),

(11), (12) in Figure 3. Table 4 shows the

configuration time and the installation time for each

node. Without the proposed tool, if users want to

deploy a K3s cluster, they have to manually do all

setting steps, which leads to misconfiguration and

causing wastes of time and resources. The proposed

tool makes the deployment of a K3s cluster easier

and faster.

No. Entity
Configuration

time

Installation

time

1 Master node 157s 96s

2 Raspberry Pi 126s 101s

Table 4. Implementation Results

Ⅴ. Conclusion

In IoT environment, a million applications need

to be managed and orchestrated using Kubernetes. A

native K8s is heavy for IoT devices with limited

resources. Therefore, K3s is proposed for the IoT

environment. K3s requires complex node

configuration and cluster deployment. This paper

proposed a tool that helps to configure and install

K3s on IoT devices, and interconnect them to form

a K3s cluster without manual steps. The experiment

shows that the proposed tool makes the deployment

of a K3s cluster easier and faster.

References

[1] Y. Han, S. Shen, X. Wang, S. Wang, and

Victor C. M. Leung, “Tailored learning based

scheduling for kubernetes-oriented edge-cloud

system,” IEEE INFOCOM, 2021.

[2] M. C. Ogbuachi, A. Reale, P. Suskovics, and

B. Kovacs, “Context-Aware kubernetes

scheduler for edge-native applications on 5G,”

J. Commun. Softw. Syst., vol. 16, no. 1, 2020.

[3] D. Lennick, A. Azim, and R. Liscano,

“Container-based internet-of-things architecture

pattern: Kill switch,” ISORC, Nashville, TN,

USA, May 2020.

[4] Kubernetes, [Online] Available: https://kuberne

tes.io/docs/home/

[5] T. Goethals, F. DeTurck, and B. Vockaert,

“Extending kubernetes cluster to low-resource

edge devices using virtual kuberlets,” IEEE

Trans. Cloud Computing, 2020.

[6] K3s [Online] Available: https://rancher.com/do

cs/k3s/latest/en/

[7] K3s Requirements [Online] Available: https://r

ancher.com/docs/k3s/latest/en/installation/instal

lation-requirements/

[8] Containerd, [Online] Available: https://contain

erd.io/

[9] CRI-O, [Online] Available: https://cri-o.io/

[10] Open Cotnainer Initiative, [Online] Available:

https://opencontainers.org/

[11] K3s Architecture [Online] Available: https://ra

ncher.com/docs/k3s/latest/en/architecture/

[12] Etcd3 [Online] Available: https://etcd.io/docs/v

3.3/learning/api/

[13] MySQL [Online] Available: https://www.mysq

l.com/

[14] Postgres [Online] Available: https://www.post

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '21-11 Vol.46 No.11

1964

gresql.org/

[15] SQLite3 [Online] Available: https://www.sqlit

e.org/index.html

[16] S. Bohm and G. Wirtz, “Profiling lightweight

container platforms: MicroK8s and K3s in

comparison to kubernetes,” 13th ZEUS

Wkhps., pp. 65-73, Germany, Feb. 2021.

[17] K3s Official Script, [Online] Available: https://

get.k3s.io/

레 반끄엉 (Van-Cuong Le)

Van-Cuong Le received the

B.Eng. degree in software

engineering from the

University of Science &

Technology, University of Da

Nang, Da Nang City,

Vietnam, in 2018. He is

currently pursuing a master’s degree with Soongsil

University. His research interests include

Software-defined Network/Network Function

Virtualization.

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

[ORCID:0000-0002-5578-6931]

www.dbpia.co.kr


	Lightweight K3S Tool for Internet of Things Environments
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Background
	Ⅲ. The Proposed Tool
	Ⅳ. Experiment
	Ⅴ. Conclusion
	References


