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ABSTRACT

The remaining useful life (RUL) prediction of supercapacitors is an important part of supercapacitors

management system. To accurately predict the RUL of supercapacitor, a large amount of capacity data is

required which can be difficult to acquire due to privacy restrictions and limited access. Previous works have

employed the use of deep learning models to synthetically generate data. However, a prerequisite ensuring the

success of these models depends on their ability to preserve the temporal dynamics of the data. This paper

presents a generative adversarial network (GAN) for synthetic data generation and a long short-term memory

(LSTM) network for accurate RUL prediction. Firstly, the GAN model is employed for synthetic data

generation and LSTM for RUL prediction. We show that the GAN model is capable of preserving the

temporal dynamics of the original data and also prove that the generated data can be used to accurately carry

out RUL prediction. Our proposed GAN model was able to achieve an accuracy of 85% after 500 epochs.

The performance of the generated data set with the LSTM model achieved an RMSE of 0.29. The overall

results show that synthetic data can be used to achieve excellent performance for RUL prediction.

Key Words : Deep learning models, generative adversarial network, supercapacitors, synthetic data

generation, remaining useful life

Ⅰ. Introduction

Supercapacitors are known for their high power

density, wide temperature range as well as long

service life[3]. Supercapacitors are applied in a wide

range of fields such as microgrid[4], renewable

energy[5], hybrid vehicles[6]. Due to the wide use of

supercapacitors, the remaining useful life (RUL) will

directly affect the reliability and safety of the entire

system or machine[7,8]. RUL is the length of time a

machine or system is likely to operate before it

requires repair or replacement. RUL helps to predict

the current health status of a system and allows

scheduled maintenance and optimization of operation

efficiency[9]. There are two ways by which RUL

prediction can be achieved mainly the model-based

method and data-driven method. The model-based

method combines the use of different models and

filtering methods to achieve prediction. However,

due to the complex nature of supercapacitors, the

model-driven approach is complex and difficult to

implement. In contrast, the data-driven method

attempts to derive the degradation process of a

system from measured data using machine learning
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Fig. 1. Application of Super Capacitors.

techniques[10]. This method is used to carry out RUL

predictions based on historical data measured from

systems. Hence, the prediction accuracy of

data-driven methods depends not only on the quality

but the quantity of the historical data which is

generally difficult to obtain for use in real cases[11].

A solution to employ is the use of synthetic data

generation (SDG) which is the process of generating

data artificially to preserve privacy in cases where

data are limited due to privacy requirements. The

generated synthetic data can be used as training data

for machine learning algorithms.

In this paper, we present a deep learning model

for SDG. Specifically a Generative adversarial

Networks (GANs) is used to generate super

capacitor data. Unlike other methods, GAN is

capable of preserving the temporal dynamics of the

data. That is, it is capable of generating a data set

with a certain trend. The main contributions of this

paper are as follows: firstly, we generate the

capacity data from the original supercapacitor data

set. Secondly, we compare the results between the

original data set and the generated data set. Lastly,

we use the generated data set to perform RUL

prediction of supercapacitors using an LSTM model.

The remainder of this paper is organized as

follows. The related works are presented in Section

II. Section III introduces the method employed in

detail. Section IV describes the experimental results

while Section V gives the conclusion of the paper.

Ⅱ. Related Works

The role of SDG is rapidly increasing since

machine learning algorithms are trained with an

incredibly large amount of data which can usually

be very difficult to obtain or generate. SDG can be

generated using two methods: mathematical models

and deep learning.

2.1 Supercapacitors
Supercapacitors is a type of capacitor that has a

capacitance value extremely higher than the

conventional electrolyte capacitors. It consists of

positive and negative electrodes (current collectors),

a separator, and the electrodes. The separator is a

membrane that insulates the electrodes and

guarantees only the mobility of ions rather than the

electric connection between them[12]. The cations and

the anions of the electrolyte solution are respectively

attracted by the negative and positive electrodes

forming thin double layers without the need to

charge transfer[13]. Supercapacitors have a

demonstrated robustness in applications such as

hybrid vehicles, wind turbine pitch systems,

automotive, power grid, energy and utilities,

aerospace, military radio communication devices and

medical fields[14] as shown in Fig. 1.

2.2 Mathematical models
Mathematical models involve generating data

through the use of probabilistic models such as the

Gaussian mixture model, Autoregressive moving

average, Monte Carlo method, and Markov chain.

These models use statistical analysis and

computational algorithms to better understand the

data and generate random samples. In [15], the

authors proposed a statistical model combining

Fourier series and autoregressive moving average

(ARMA) to synthetically generate weather

conditions such as wind speed and grid demand

data. Probabilistic analysis of hybrid system

configuration was carried out based on the synthetic

data to understand component ramping requirements.

In [16], the Markov chain method was used to
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generate operational data for subsequent use in

monitoring, predicting, controlling battery pack state

of health based on capacity variations. Here the

electric vehicle data set was used to generate

transition probability matrices using the concept of

Markov chain propagation. In [17], the application

of the Gaussian mixture model is used as a method

for generating independent and identically distributed

samples of data which was originally obtained from

immersive virtual environments to solve the issue of

the small sample size associated with the immersive

virtual environment experiments. The Gaussian

mixture model was trained by implementing an

expectation-maximization algorithm and the K-mean

algorithm was used to initialize its parameters.

Despite the advantages that can be obtained from

the use of mathematical models there are still some

disadvantages to them which include the difficulty

and complexity in building such models also they

require the use of expert engineers to carry out such

experiments in other to achieve the desired results.

2.3 Deep learning model
Deep learning models are created using neural

networks. They contain the inner layer, hidden layer,

output layer. An example of deep learning models

for SDG as stated earlier are Variational

autoencoders (VAEs) and GAN. VAE are examples

of generative models that use variational bayesian

inference to approximate the probability density.

They work with a pair of entities called encoder and

decoder. In [18], a VAE-based synthetic generation

method is proposed for the imbalanced learning

problem. The VAE was trained to sample values of

the latent variables which are likely to produce

original data after which new samples were

generated from the conditional distribution of the

data fed to the latent variable. In [19], research was

conducted to test the data construct effect of the

VAE by different latent variables. The VAE is

known to generate data that looks exactly like the

original data. The experimental results showed that

the generated data always has a single style when

the latent variable number is small. This can be

considered as a disadvantage especially when

working with time-series data. To generate

time-series data, the generative model must be able

to preserve temporal dynamics such that new

sequences respect the original relationships between

variables across time. GAN has been known for its

promising result with time-series data. A GAN

approach is presented for generating high-fidelity

synthetic data based on the batteries parameter. The

result showed that the generated data could also be

used to increase training data for the state of charge

estimation algorithms. In [20], the authors proposed

a novel data-driven approach to synthetic data

generation by utilizing deep generative adversarial

networks (GAN) to learn the conditional probability

distribution of essential features in the real dataset

and generate samples based on the learned

distribution. In this paper, we apply GAN to

generate synthetic data and use said generated data

to perform RUL prediction.

Ⅲ. Methodology

In this section, we present the GAN model used

for synthetic data generation as well as the process

used for RUL prediction as shown in Fig. 2. The

GAN model is used to synthetically generate new

data set after which the generated data is used to

perform RUL prediction.. The proposed method for

the data generation consists of two steps the model

training, and the sample generation step. In each

step, we carry out different processes in other to

generate synthetic data. In the model training, the

proposed GAN model is built and trained to learn

the input data while in the sample generation step

the data is generated and evaluated to see if the

model was able to learn the data set.

3.1 Dataset
In this paper, the dataset used consists of the

values of supercapacitor parameters such as current,

power, voltage and resistance measured every 0.1

second. The data is obtained from a

charge-discharge cycle test of an actual 21000F

supercapacitor. The supercapacitor has a rated

working voltage of 4.2V, absolute maximum voltage
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Fig. 2. System overview.

Fig. 3. Unconditional GAN.

of 4.25V, absolute maximum current of 20A,

operating temperature range of -20°C-55°C,

maximum working temperature of up to 60°C, and

an internal resistance greater than 1.50mΩ. The total

number of real samples used consists of data from

1750 charge-discharge cycles. Among 1750 cycles,

1400 cycles are used for training while the rest are

used for testing.

3.2 Data Generation
We define an Unconditional GAN model as

shown in Fig. 3 which is used to generate synthetic

datasets. GAN consists of two adversarial models: a

generative model G that captures the data

distribution, and a discriminative model D that

estimates the probability that a sample came from

the training data rather than the generative model.

Both G and D could be a non-linear mapping

function. To learn a generator distribution  over

data  the generator builds a mapping function

from prior noise distribution  to data space as

 and the discriminator  outputs a single

scalar representing the probability that  came from

training data rather than  G and D are both

trained simultaneously while we adjust parameters

for G to minimize log− and adjust

parameters for D to minimize log as if they

are following the two-player min-max game with

value function:

minmax ∼ log
∼ log 

(1)
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Fig. 4. Methodology for training of GAN model.

Fig. 5. Plot of real and generated data set.

In the generator net, a prior  with

dimensionality of 100 was drawn from a uniform

distribution. Both  and  are mapped to hidden

layers with Rectified Linear unit (ReLu) activation

before being mapped to the second combined ReLu

layer. We then use a sigmoid unit layer as output

for generating the capacitance samples. The model

was trained using stochastic gradient decent with

mini-batch size of 128 and initial learning rate of

0.01 which was decreased down to 0.001. Also

momentum was used with initial value of 0.5. A

dropout with probability of 0.5 was applied to both

the generator and the discriminator and best estimate

of log-likelihood on the validation set was used as

stopping point. We further explain the processes

used for data generation as shown in Fig. 4.

Step 1. Model training: The 21000F supercapaitor

dataset was loaded with the aim of generating more

capacity data as an indication that synthetic data can

be used in cases of limited data for accurate

prediction of supercapacitor. We define a class GAN

with Adam optimizer as well as generator noise. We

stack and train the generator to fool the

discriminator. Next, we train the model by epoch

number and create a path to save, load, and return

the generated data set. The model consists of

hyperparameters such as batch normalization,

activation functions, and dense layers. Two different

types of activation functions was used for both the

generator and the discriminator. The relu activation

function was used for the generator while the

sigmoid function was for the discriminator. The

sigmoid function is used for the discriminator as it

takes real values as input and outputs them in the

range of 0 to 1 hence, the larger the input the closer

the output value will be. We use the Adam

optimizer with tuned hyperparameters which include

a learning rate of 0.001. We choose the learning rate

to be as small as possible and a momentum term

beta function of 0.5 to avoid training oscillation and

instability of the model. We train the model using

500 epochs and generate new data which is then

saved as a CSV file.

Step 2. Sample generation: For the generation

process step we build the model using 2 input layers

and 5 dense layers. We start with a seed size of 17

and a model step once the data has been generated

we test the model again using a different seed size

to check the variation in both data generated. We

define a model step in the evaluation stage to check

the samples generated by the GAN model. In

training the GAN model, the original data is loaded

to the model to see how well the model ia able to

learn the dataset. Using data from 1750 cycles, 2

different data with 1750 cycles are also generated.

In viewing all cycles, the difference between the

original and generated dataset is not observed.

Hence, a zoomed-in version from cycles 1630 to

1750 is shown in the subplot in Fig. 5. As shown

in the figure real data represents the original data set

while generated data1 and generated data2 represent

the two generated data sets. Generated data1 and

generated data2 are obtained using seed values of 17

and 20 respectively both generated data sets are

trained using 500 epochs with a mini-batch size of

128. For the second generated dataset, we tune the

model hyperparameters a bit by using a learning rate

of 0.001 with a momentum term beta function of

0.6.
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Fig. 6. Working principle of an LSTM network. Fig. 7. RUL prediction of generated data set.

3.3 RUL prediction
The concept of RUL is utilized to predict the

lifespan of a system to minimize catastrophic

failures in both the manufacturing and service

sectors. In this paper, after our data set has been

generated we then perform RUL prediction on the

generated data set. We implement the RUL

prediction using a long-short term memory (LSTM)

network. LSTM is an artificial recurrent neural

network used in the field of deep learning and

unlike standard feed-forward neural networks, LSTM

has feedback connections that can be used to

process not just single data points but also an entire

sequence of data. LSTM unit composes of a cell, an

input gate, an output gate, and a forget gate. A

diagram of a simple LSTM network is shown in

Fig. 6. The LSTM model is used for the remaining

useful life prediction of the supercapacitor. The aim

of predicting RUL using the generated dataset is to

show that in cases of limited dataset, synthetic data

can also be applied for research purposes and can

still perform and produce accurate result as the

original dataset would.

In this paper, the input variable used for the

LSTM model was the original dataset as well as the

generated dataset. Both datasets are used in order to

obtain the validity of the GAN model. The input

data is prepared using a 2D feature NumPy array

with random integers. The data set is split in the

ratio of 80/20, 80 been used for training while 20

for testing. The data is preprocessed using feature

scaling to scale the data to be valued between 0 and

1. Scaling data before feeding it into the neural

network is a good practice as it helps for optimal

performance that is for noise removal and

normalization. Next, we predict values taking N=100

(where N=100 is the number of training dataset

used) with a sliding window of I=10 and y_train

will contain values of I+1 values which we want to

predict after which, we convert the x_train and

y_train into NumPy array values and reshape into a

3D array which is accepted by the LSTM model.

After reshaping, we built the architecture by making

an object of the sequential model. We add the

LSTM layer with parameters (units: the dimension

of output space, input shape: the shape of the

training set, return_sequences: True or false which

determines whether to return the last output in the

output sequence or the full sequence. We add 4 of

the LSTM layers each with a dropout layer of value

0.2). The final layer is the output layer which is a

fully connected dense layer (units = 1 as we are

predicting only one value that is I+1). The dense

layer operates on the input layers and returns the

output and every neuron at the previous layer is

connected to the neurons in the next layer hence it

is called a fully connected dense layer. We compile

the model using ‘adam optimizer’ (which is a

learning rate optimization used while training of

deep neural network models) and error is calculated

by loss function ‘mean squared error’ (as it is a

regression problem we use a mean squared error

loss function) using the formula in (2) below.

MSE  





  



 (2)

where  represents the capacity and  is the

number of cycles.
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Parameter Value

Number of epoch 1000

Batch size 128

Learning rate 0.001

optimizer Adam

Beta function 0.5

Table 1. Parameters for GAN model training.

Dataset RMSE MAPE

Average of generated dataset 0.029 0.025

Original dataset 0.030 0.027

Table 2. Performance evaluation result.

We then fit the model on 30 epoch (epochs are

the number of times we pass the data into the neural

network) and a batch size of 50 (we pass the data

in batches segmenting the data into smaller parts so

as for the network to process the data in parts).

Furthermore, we create test data similar to train data

to convert to NumPy array and reshape the array to

a 3D shape. Lastly, we make predictions and

calculate the ‘root mean squared error’ (the smaller

the root mean square error score the better the

model has performed). The result of the RUL

prediction is seen in Fig. 7.

Ⅳ. Results and Discussion

This section provides information about the

dataset used, the results obtained, and the inference

that can be made based on the result. The GAN

architecture was evaluated on the datset obtained

from a charge-discharge cycle of an actual 21000F

supercapacitor. The total number of real samples

used consists of data from the 1750 charge-discharge

cycles. Among 1750 cycles, 1400 cycles have been

used for training while the rest are used for testing.

This data set was chosen to test the behavior of the

GAN model on decreasing trends of data. A GAN

model has been employed to generate the synthetic

data. The result of the original data and generated

data plot is shown in Fig. 5. Table 1 summarizes the

model parameters used for the GAN model training

which was generated with a training accuracy of

85%. The result for the obtained validity of the

GAN model is shown in table 2. We compared the

RMSE and MAPE result of the average gotten from

the generated datasets to that of the original dataset.

The root mean square error (RMSE) reflects the

stability of the model while the mean absolute

percent error (MAPE) not only considers the error

between the predicted value and the truth value but

also considers the proportional relationship between

them. Table 2 shows the RMSE and MAE

performance error gap between the average datasets

and the original data is close which proves that the

GAN model was able to learn the original dataset

well. For the RUL prediction, the epoch number of

the LSTM is set to 250, the hidden unit containing

50 units and a dropout of 0.2 was used. Fig. 6

shows the RUL prediction result. The original data

obtained an RMSE value of 0.030 while that of the

generated data was 0.029.

Ⅴ. Conclusion

Data generation has become a vital tool for

researchers and data scientists. To carry out

algorithms and research purposes a large amount of

data is needed. Generation of data is expensive and

time-consuming. This paper utilizes a Generative

adversarial network-based approach to generate

synthetic data. The technique was employed on the

capacity column of the supercapacitor data. The

result shows that the GAN model can generate

synthetic data while preserving the temporal

dynamics of the data. The synthetic data generated

can be used in cases of limited datasets and also

presents an intuitive technique for increasing training

data for RUL prediction. Rul prediction was carried

out on generated dataset and results show the ability

to predict RUL using data generated by the GAN

model.
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