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요 약

Depth Completion은 자율 주행 차량에서 장면 이해 및 환경 인식 등을 지원하는 중요한 기술이다. 기존 방식

은 두 센서의 상호 보완적 특성을 활용하기 위해 RGB 이미지와 Depth LIDAR 이미지와 같은 다중 모달 입력을

고려했다. 그러나 기존의 자동 인코더 접근 방식은 저차원 공간에서 데이터를 표현하는 데 한계가 있다. 또한

RGB 영상의 광 민감도로 인해 카메라 영상과 LIDAR 영상을 융합할 때 Depth의 불연속성이 발생한다. 본 연구

에서는 고밀도의 Depth 재구성을 위해 픽셀 밀도 대신 데이터 분포를 학습하는 데 중점을 둔 CycleGAN을 적용

하였다. 또한 Depth 불연속성 문제를 완화하기 위하여 Semantic Segmentation을 추가 입력으로 고려하였다. 제안

된 방식은 다양한 도로 환경에서 획득된 동기화된 KITTI 벤치마크 데이터를 활용하여 훈련하고 평가하였다. 실험

결과를 통해 제안된 방식이 Depth Completion의 성능과 효율 측면에서 우수함을 입증하였다.

Key Words : depth completion, cycleGAN, semantic segmentation, autonomous vehicle, sensor fusion

ABSTRACT

Depth completion is a challenging task supporting the purpose of scene understanding and environment

perception in an autonomous vehicle. The existing method considered multiple modals input such as RGB

images and depth LIDAR images to utilize the complementary characteristics of those two sensors. However,

traditional autoencoder approaches have shown limitations in representing the data in low dimensional space.

Moreover, depth discontinuity also happened when fusing the camera image and LIDAR image due to the light

sensitivity in the RGB image. In our study, we are adapting CycleGAN focusing on learning the distribution

of the data rather than the pixel density to reconstruct the depth into dense one. We also consider the

semantic segmentation as additional input to mitigate the depth discontinuity problem. Our framework is trained

and evaluated on the KITTI benchmark with synchronized data capturing various road scenery. The

experimental results prove the proposed framework to be competitive performance and efficient in depth

completion task..
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Ⅰ. Introduction

Nowadays, computer vision and deep learning

have proved to be an essential part of the

development of the autonomous vehicle. As the

crucial key for the ability to operate in the human

world, the perception system takes the responsibility

of collecting information from the surrounding

environment. In particular, the perception system

performs various scene understanding tasks such as

semantic segmentation, depth completion, object

detection, etc. In order to make a precise decision,

multiple types of sensors collecting different aspects

of data is mounted on the vehicle and by a fusion

procedure, the outcome data can be more reliable

and well visualized.

In 2001, LIDAR (Light Detection and Ranging),

which is a range measurement sensor, was first

introduced to the autonomous vehicle and received a

lot of attentions from researchers in the world.

Having a similar working principle with RADAR,

LIDAR can identify the distance to an object by

calculating the time of flight of a signal when

traveling from LIDAR to an object and reflecting

the sensor. However, instead of using radio waves,

LIDAR not only can shoot out multiple rays of laser

beams with high frequency but also can rotate 360

degrees to scan the surrounding environment.

Moreover, due to the characteristic of laser, LIDAR

achieves high precision within a great distance

compared to the RADAR. However, data collected

from LIDAR or point cloud is often sparse and

irregular structure. In particular, when a laser beam

hits an object and reflects, it sometimes cannot

return to the sensor because of the object's surface,

environmental noises such as heavy light

illuminance or some extremely adverse weather

conditions, etc. As a result, point cloud appears

some holes identified as invalid measurement

regions. Depth completion is to fill up those holes in

sparse depth LIDAR data to generate a dense depth

map.

The existing methods such as FusionNet[1],

PENet[2] or GuideNet[3] utilize corresponding RGB

images as additional input to make the depth

prediction and preserve scene structure in depth

image. However, since the RGB is highly sensitive

to optical changes, the result can be falsely predicted

and downgrade the performance. In this paper, we

will put semantic segmentation as a third input to

compensate for the optical changes in RGB images.

Generative Adversarial Network (GAN),

introduced in 2014, had made a significant

contribution to image generation. The most

outstanding breakthrough of GAN is that it

efficiently learns the distribution of data rather than

their numerical density value. Therefore, GAN can

better represent the data in a low-dimensional

manifold than traditional autoencoder architecture. In

addition, structure preservation is also an essential

key in depth completion. This problem is considered

to be similar to the image-to-image translation

problem, which is the task of transferring the source

domain to the target domain while ensuring the

content is consistent. Zhu et al.[4] proposed a

cycle-consistent adversarial (CycleGAN)

implementing the image-to-image translation

concept. In particular, by taking advantage of feature

richness in RGB image, the CycleGAN can transfer

the color domain of RGB image to the depth

domain of the depth image and the sparse depth

map can be constructed into a dense and

well-structured depth map.

In summary, our contributions are as follow:

∙We successfully adapted the CycleGAN

architecture for solving the depth completion

problem.

∙We designed a generator having semantic

segmentation as an additional input and

introduced a smoothness penalization loss for

enhancing the model performance.

Ⅱ. Related Works

IImage-to-Image translation. The purpose of

image-to-image translation is to transform the

content of an image from the source domain to a

target domain. The transformation must be consistent

in image content and style between two domains.

Generative Adversarial Network (GAN)[5] is
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Fig. 1. Overview of overall architecture.

achieved multiple outstanding result in the task of

generating a realistic image using the adversarial

idea. CycleGAN[4] is proposed by Zhu et al.

combining original GAN and cycle consistency loss

for unpaired image translation task. However,

CycleGAN not only has low performance when

converting images with complex structures but also

poorly generates semantic labels and object details

from RGB images. Fu et al.[6] proposed a

geometry-consistent generative adversarial network

(GcGAN) taking a single RGB as the first input and

its corresponding geometry transformation as the

second input, and GcGAN can generate the output

with the corresponding geometry constraint.

Nevertheless, despite achieving some noticeable

improvement, GcGAN is still unable to compensate

for the problem of generating poor details in

CyccleGAN when transforming. In an effort to solve

the aforementioned problem, Li et al.[7]. proposed an

Asymmetric GAN (AsymGAN) successfully

generating the result with fine-grained detail and

further improving image realistic. They designed the

second autoencoder following with the second

discriminator for learning auxiliary of image content,

but the complexity of the model is significantly

increased.

Depth completion. Depth completion is the task

of generating valid depth measurements and

replacing unidentified regions in sparse LIDAR

images. Two main approaches are single depth

image input and multiple modals input. Uhrig et

al.[8] proposed a sparse convolution mechanism

working on sparse data and used a validity mask to

indicate the position of valid depth value. However,

the performance of the model gradually decreases in

a deeper layer. Lu et al.[9] further improved by

focusing on learning and constructing the semantic

segmentation information in the depth image.

HMSNet[10] proposed by Eldesokey et al. also has

some improvement. They designed a

multi-functional layer for upsampling and

downsampling the sparse depth. In contrast to the

single depth input, multiple modals input taking

RGB image as additional input outperformed the

single depth input method due to the complemented

characteristics between RGB image and sparse depth

LIDAR image. Mat et al.[11] designed a deep

regression model taking a concatenated sparse depth

map with the corresponding RGB image to predict

the depth value. Eldesokey et al.[12] proposed a

normalized convolution layer in CNN for adapting

the sparse data and extracted a confidence map

indicating the validity of pixels in the sparse data.

This approach also came with a small number of

parameters, which significantly reduced the size of

the model. Besides RGB images, other aspects also

is being considered as supportive information to

enhance the accuracy of prediction, such as surface

normal[13] and semantic segmentation[14].

In our study, we will consider the semantic

segmentation information as an additional input to

compensate for the light sensitivity of the RGB

image problem, which makes the depth discontinuity

in the predicted result.

Ⅲ. Methodology

3.1 Architecture overview
The overall framework is shown in Figure 1. Our

backbone is based on the CycleGAN[4] architecture

consisting of two design generators, and two similar

design discriminators. As abovementioned, we

embed the semantic segmentation as additional input

by concatenating with the sparse depth LIDAR. The

proposed architecture has two stages:

∙ In the first stage, set of three input 2D LIDAR

depth image, RGB image and semantic

segmentation are fed into the generator  to

generate the dense depth LIDAR image. Then,

both of the generated result and the corresponding
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Fig. 3. Overview of the generator architecture

Fig. 2. Heavy checkerboard artifact.

dense depth ground truth will be put into the

discriminator  for classification.

∙ In the second stage, the generated dense depth

result from the generator  will put into the

generator  to transfer back to the color domain

or the RGB image. Then, the generated RGB

image and the original corresponding RGB image

will also be put in the second discriminator 

for classification purpose.

The detail of the generator / and the

discriminator / will be discussed in the next

sector.

3.2 Architecture details
Generator. The architecture of both  and  is

similar. We design the generator having the

autoencoder architecture similar with the PENet[2],

which has two branches with similar layer layout.

The upper aims to predict the dense depth map from

RGB image with a confidence map. The lower also

aims to upsampling the sparse LIDAR sample with

a confidence map. Finally, final depth map is

combined from two branches by a fusion metod

applied in FusionNet[1]. In particular, we denoted the

depth map and confidence map generated from RGB

image as  and ; the depth map and the

confidence map upsampled from sparse LIDAR as

 and . The final depth D is:

 


  


  


  

  
 

 

The detail of the generator is shown as Figure 3.

However, we also make some modifications to

the decoder. We replace the traditional

deconvolutional layer causing heavy checkerboard

artifact as shown in Figure 2 with the resize

convolution layer[15]. It consists of a

nearest-neighbor upsampling layer followed by a

convolution layer.

Discriminator. The architecture of both  and

 is similar. We design discriminator based on the

DCGAN[16] architecture. The backbone of the

discriminator is constructed by applied series of

convolutional block. Each block consists of three

consecutive layers: a convolution layer, a

BatchNorm layer and a ReLU activation layer.

Finally, a sigmoid layer is placed at the end to

output a probability indicating which one is real of

fake sample. The detail of the discriminator is
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Fig. 4. Overview of the discriminator architecture.

shown as Figure 4.

3.3 Loss function
The cycle consistency loss. The cycle

consistency[4] is applied to constrain the consistency

when transforming between from RGB domain into

depth domain and reversing. The loss is formulated

as:

   ∼ｄ 


＋ ∼ 
  

where  denoted as predicted depth map, 

denoted as corresponding rgb image sample.

Structural similarity reconstruction loss. We

further constrain the transformation by using the

SSIM[17] metric to ensure the scene structure and the

original content between input RGB image and the

generated RGB image in stage two of the model.

The loss is formulated as:

   

where  is the input RGB image, and the  is

the RGB image generated by the generator .

Depth loss. Following the study by Carvhalho et

al.[18], we decide to use  to minimize the loss

between the generated depth value and the

groundtruth. The loss is formulated as:

  ＞ ⊙

where  denoted as predicted depth map,  denoted

as corresponding groundtruth sample.    denoted

as the indicator showing valid depth value in depth

LIDAR image.

Smooth penalization loss. As mentioned before,

due to the light sensitivity of RGB, we use the

semantic segmentation image to compensate the

problem. Inspired by [19], we adapt the

second-order differential loss to reduce the impact of

the optical changes. The loss is formulated as:

  


  



∇
  

∇

 ∇

 
∇


 

where ∇
  , ∇

 denoted as the second-order

derivative in the x-direction and y-direction of the

generated depth image, ∇
  , ∇

 denoted as the

second-order derivate in the x-direction and

y-direction of the semantic segmentation image.  is

the exponential function.  is the total number of

pixels.

Adversarial loss. In the DCGAN, adversarial loss

using BCE loss is used to help the discriminator /

 classifying between the generated sample and the

groundtruth sample. The loss is formulated as:

   ∼
log 

＋ ∼
 log 

The above loss function is used for the

discriminator  in the first stage with the sample

generated by . The adversarial loss for  is
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Fig. 5. Visualization of the comparison result

similar but with the sample generated by .

The overall loss used in training is formulated as:

       
   

where , , , ,  are the hyper parameters

controlling the weight of each loss.

Ⅳ. Experiment Results

4.1 Dataset
In our study, KITTI dataset is used for training

and evaluating. The dataset contains total of 85898

training samples, 1000 verification samples, 1000

test samples. Each RGB frame is synchronized with

project LIDAR point to 2D image plane. During

training, we reduce the image dimension from

1216x352 to 512x256 for saving time and memory

capacity.

4.2 Evaluation metric
We use 4 standard metric using in depth

completion benchmark: root mean square error

(RMSE) [mm], mean absolute error (MAE) [mm],

root mean square error of the inverse depth

(iRMSE) [1/km], and mean absolute error of the

inverse depth (iMAE) [1/km].

4.3 Performance evaluation
Table 1. shows the performance comparison

between different architecture. Compared to

IR_L2[9], NConv-CNN[12] and PwP[21], we have

better result and suffer less noise in the upper region

in the depth image. CSPN[20] and Sparse-to-Dense[11]

show that they fail to fill out the valid depth in the

upper area. Moreover, DeepLIDAR[13] shows that

they are losing some content and scene structure

compared to the RGB image. Overall, our result

prove to have better in visual and smoother in depth

transition as shown in Figure 5.
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Method Input RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]

IR_L2 [9] depth-only 901.43 292.36 4.92 1.35

CSPN [20] multiple-input 1019.64 279.46 2.93 1.15

NConv-CNN [12] multiple-input 829.98 233.26 2.60 1.03

Sparse-to-Dense [11] multiple-input 814.73 249.95 2.80 1.21

PwP [21] multiple-input 777.05 235.17 2.42 1.13

DeepLIDAR [13] multiple-input 758.38 226.50 2.56 1.15

Our multiple-input 746.96 267.71 2.24 1.10

Table 1. Performance comparison of others architecture

Ⅴ. Conclusion

We proposed an architecture using a CycleGAN

that takes multiple inputs to generate a dense depth

map. We further concatenated the semantic

segmentation with the sparse depth LIDAR image to

compensate for the sensitivity of the RGB image to

lighting conditions in the surrounding environment.

In our future study, we will combine the task of

semantic segmentation with the CycleGAN and

build a multi-task architecture.

References

[1] W. Van Gansbeke, D. Neven, B. De

Brabandere, and L. Van Gool, “Sparse and

noisy lidar completion with rgb guidance and

uncertainty,” in 2019 16th Int. Conf. MVA, pp.

1-6, Tokyo, Japan, May 2019.

[2] M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and

X. Gong, “Towards precise and efficient

image guided depth completion,” arXiv

e-prints, arXiv-2103, 2021.

[3] J. Tang, F. P. Tian, W. Feng, J. Li, and P.

Tan, “Learning guided convolutional network

for depth completion,” IEEE Trans. Image

Process., vol. 30, pp. 1116-1129, Dec. 2020.

[4] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros,

“Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in

Proc. IEEE Int. Conf. Comput. Vision, pp.

2223-2232, Venice, Italy, Oct. 2017.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.

Xu, D. Warde-Farley, S. Ozair, and Y.

Bengio, “Generative adversarial nets,”

Advances in NIPS, vol. 27, Monreal, Canada,

Dec. 2014.

[6] H. Fu, M. Gong, C. Wang, K. Batmanghelich,

K. Zhang, and D. Tao, “Geometry-consistent

generative adversarial networks for one-sided

unsupervised domain mapping,” in Proc.

IEEE/CVF Conf. CVPR, pp. 2427-2436,

Califonia, USA, Jun. 2019.

[7] Y. Li, S. Tang, R. Zhang, Y. Zhang, J. Li,

and S. Yan, “Asymmetric GAN for unpaired

image-to-image translation,” IEEE Trans.

Image Process., vol. 28, no. 12, pp. 5881-

5896, Jun. 2019.

[8] J. Uhrig, N. Schneider, L. Schneider, U.

Franke, T. Brox, and A. Geiger, “Sparsity

invariant cnns,” in 2017 Int. Conf. 3DV, pp.

11-20, Qingdao, China, Jun. 2017.

[9] K. Lu, N. Barnes, S. Anwar, and L. Zheng,

“From depth what can you see? Depth

completion via auxiliary image reconstruction,”

in Proc. IEEE/CVF Conf. CVPR, pp. 11306-

11315, China, Jun. 2020.

[10] Z. Huang, J. Fan, S. Cheng, S. Yi, X. Wang,

and H. Li, “Hms-net: Hierarchical multi-scale

sparsity-invariant network for sparse depth

completion,” IEEE Trans. Image Process., vol.

29, pp. 3429-3441, Dec. 2019.

[11] F. Ma and S. Karaman, “Sparse-to-dense:

Depth prediction from sparse depth samples

and a single image,” in 2018 IEEE ICRA, pp.

4796-4803, Brisbane, QLD, Autralia, May

2018.

[12] A. Eldesokey, M. Felsberg, and F. S. Khan,

www.dbpia.co.kr



The Journal of Korean Institute of Communications and Information Sciences '22-05 Vol.47 No.05

788

“Confidence propagation through cnns for

guided sparse depth regression,” IEEE Trans.

Pattern Anal. and Mach. Intell., vol. 42 no.

10, pp. 2423-2436, Jul. 2019.

[13] J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu,

B. Zeng, and M. Pollefeys, “Deeplidar: Deep

surface normal guided depth prediction for

outdoor scene from sparse lidar data and

single color image,” in Proc. IEEE/CVF Conf.

CVPR, pp. 3313-3322, Califonia, USA, Jun.

2019.

[14] M. Jaritz, R. De Charette, E. Wirbel, X.

Perrotton, and F. Nashashibi, “Sparse and

dense data with cnns: Depth completion and

semantic segmentation,” in 2018 Int. Conf.

3DV, pp. 52-60, Verona, Italy, Sep. 2018.

[15] A. Odena, V. Dumoulin, and C. Olah,

“Deconvolution and checkerboard artifacts,”

Distill, vol. 1, no. 10, Oct. 2016.

[16] Y. Yu, Z. Gong, P. Zhong, and J. Shan,

“Unsupervised representation learning with

deep convolutional neural network for remote

sensing images,” in Int. Conf. Image and

Graphics, pp. 97-108, vol. 10667, Shanghai,

China, Dec. 2017.

[17] Z. Wang, A. C. Bovik, H. R. Sheikh, and E.

P. Simoncelli, “Image quality assessment:

from error visibility to structural similarity,”

IEEE Trans. Image Process., vol. 13, no. 4,

pp. 600-612. Apr. 2004.

[18] M. Carvalho, B. Le Saux, P. Trouvé-Peloux,

A. Almansa, and F. Champagnat, “On

regression losses for deep depth estimation,”

in 2018 25th IEEE ICIP, pp. 2915-2919,

Athens, Greece, Oct. 2018.

[19] C. Zhao, G. G. Yen, Q. Sun, C. Zhang, and

Y. Tang, “Masked GAN for unsupervised

depth and pose prediction with scale

consistency,” IEEE Trans. Neural Netw. and

Learn. Syst., vol. 32, no. 12, pp. 5392-5403,

Dec. 2020.

[20] X. Cheng, P. Wang, and R. Yang, “Learning

depth with convolutional spatial propagation

network,” IEEE Trans. Pattern Anal. and

Mach. Intell., vol. 42, no. 10, pp. 2361-2379,

Oct. 2019.

[21] Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and

H. Li, “Depth completion from sparse lidar

data with depth-normal constraints,” in Proc.

IEEE/CVF Int. Conf. Computer Vision, pp.

2811-2820, Califonia, USA, Jun. 2019.

응 웬민찌 (Minh-Tri Nguyen)

Tri Minh Nguyen received

the B.Eng. degree in

computer engineering from

the University of Information

Technology, Vietnam National

University—Ho Chi Minh

City, Ho Chi Minh City,

Vietnam, in 2019. He is currently pursuing the

master’s degree with Soongsil University. His

research interests include Visible Light

Communication(VLC).

유 명 식 (Myungsik Yoo)

Myungsik Yoo received his

B.S. and M.S. degrees in

electrical engineering from

Korea University, Seoul,

Republic of Korea, in 1989

and 1991, and his Ph.D. in

electrical engineering from

State University of New York at Buffalo, New

York, USA in 2000. He was a senior research

engineer at Nokia Research Center, Burlington,

Massachusetts. He is currently a professor in the

school of electronic engineering, Soongsil

University, Seoul, Republic of Korea. His research

interests include visible light communications,

sensor networks, Internet protocols, control, and

management issues.

www.dbpia.co.kr


	CycleGAN-Based Depth Completion for Autonomous Vehicles
	요약
	ABSTRACT
	Ⅰ. Introduction
	Ⅱ. Related Works
	Ⅲ. Methodology
	Ⅳ. Experiment Results
	Ⅴ. Conclusion
	References


