
논문 22-47-12-07 The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12
https://doi.org/10.7840/kics.2022.47.12.2065

2065

※ This work was supported by the IRAD project (1711170905) of Korea Aerospace Research Institute of Korea

w° First and Corresponding Author : Korea Aerospace Research Institute, chkoo@kari.re.kr, 정회원

* InterPlanetary Networking Special Interest Group, sburleig.sb@gmail.com

논문번호：202209-199-B-RE, Received September 2, 2022; Revised October 14, 2022; Accepted October 20, 2022

Structural Considerations for Generating and Handling LTP

Report Segments from an Interoperability Testing

Cheol Hea Koow°, Scott C. Burleigh*

ABSTRACT

Delay- and disruption-tolerant networking (DTN) technology is increasingly being considered for deep space

exploration missions. In particular, DTN is being considered for trunk-line communications between ground and

lunar elements of the Artemis program. Licklider transmission protocol (LTP) is a DTN protocol that supports

reliable data transmission within a network and, as such, functions as a necessary “convergence-layer” protocol

in the architecture. Korea Aerospace Research Institute (KARI) has recently developed an LTP reference

implementation and performed an interoperability test with the National Aeronautics and Space Administration

(NASA)’s Interplanetary Overlay Network (ION) DTN software. The test revealed that there can be significant

variation in issuing report segments and data segment retransmission, which can lead to errors or malfunction

during LTP transaction. This paper presents the results of the interoperability test between different

implementations of LTP together with some implementation considerations suggested by the results to overcome

the issues of the interoperability among different LTP implementations.

Key Words : Licklider transmission protocol, delay-tolerant networking, disruption-tolerant networking, DTN,

convergence layer

Ⅰ. Introduction

Reliable transmission is vital in operational delay-

and disruption-tolerant networking (DTN)[1] for

space flight missions. Licklider transmission protocol

(LTP) is a potential approach to providing this

capability in the deep space environment where

terrestrial internet technology cannot be applied.

Communications in the deep space environment

suffer from high bit-error rates (BER), low

signal-to-noise ratio (SNR), long signal propagation

delay, and intermittent connectivity, which prevent

the use of terrestrial internet technology in space

communication[2]. LTP is a convergence-layer

protocol and was invented by the Internet Research

Task Force (IRTF) in collaboration with the

Consultative Committee for Space Data Systems

(CCSDS) as well as several space communication

experts from various space agencies, companies, and

institutes. The protocol seeks to address the

aforementioned problems concerning space

communication.

LTP is a point-to-point convergence-layer

protocol working immediately above the link layer,

providing reliable transmission between Bundle

Protocol (BP) nodes, as shown in Fig. 1. However,

LTP can also be used in non-DTN applications. For

example, an LTP unit data transfer adapter can be

deployed under a “class-1” implementation of

CCSDS File Delivery Protocol (CFDP)[3] to support

reliable point-to-point file delivery service between

communication nodes, e.g., between a ground station



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2066

Year Name Developer Distribution Characteristic

2006 LTP-RI Ohio OCP license runs on Java 1.5 (site closed)

2006 LTPlib TCD Open source Ported to various OS and DTN2 can operate this distribution

2007 ION JPL Open source

included in ION’s DTN protocol suite

supports multi-platform OS, operable by script

supports contact graph routing, BER management, link speed

management

2019 - ESA ESA license
written in Java, BP (including LTP implementation) Daemon

demonstrated with OPS-SAT

2021 i3DTN KARI private

focusing to replace space link protocol to LTP

operable by script

supports table-based contact schedule, BER management, link speed

management

Table 1. LTP reference implementations

Fig. 1. Layer architecture of DTN

and a spacecraft in deep space.

The fundamental mechanism of LTP is automatic

repeat request (ARQ). Successful operation of the

ARQ procedures of LTP relies on proper negotiation

between control segments at the closing of each

LTP transaction.

The protocol data units in LTP are of five types;

1) data segment, 2) report segment, 3) report

acknowledgment segment, 4) cancel segment, and 5)

cancel acknowledgment segment. An LTP engine

delivers its data segment reception status to a source

LTP engine in a report comprising one or more

report segment(s) generated upon receipt of a

checkpoint signal from the source LTP engine.

The LTP specification document describes the

fundamental behavior of generating and handling

report segments[4,5]. Multiple implementations of

LTP have been developed to these specifications.

However, the LTP specification is silent on some

implementation details that can significantly impact

operations.

An interoperability test was performed between

two different LTP implementations to verify their

correct operation and check their compatibility with

the LTP specification document. Unanticipated

report segment structure shapes that perfectly

complied with the specification but introduced

operational anomalies were observed during the test.

Successful interoperation was achieved only after

software modifications were applied. This paper

presents the results of this interoperability testing,

along with some implementation considerations

derived on the basis of the results.

Ⅱ. Related Works

Some prominent LTP implementations are

summarized in Table 1.

The most widely used LTP implementation is

found in the Interplanetary Overlay Network[6,7]

(ION) implementation developed by NASA’s Jet

Propulsion Laboratory. ION is available on an

open-source license. ION is an extensive DTN

software suite, which includes aspects such as

implementations of LTP, BP, CCSDS File Delivery

Protocol (CFDP), Asynchronous Message Service



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2067

(AMS), and Asynchronous Management Protocol

(AMP). ION has many commanding and configuring

options, which can be called by script. It also

includes numerous test cases that help design

interoperability tests. In addition to the LTP

implementation, ION provides an LTP

convergence-layer adapter for BP, which can be

used for interoperability testing.

Ohio University had developed implementations

of LTP and BP in Java.

European Space Agency (ESA) has developed BP

and LTP implementations written in Java. This BP

implementation worked as a Daemon and was

demonstrated with the OPS-SAT ground test

environment[8].

i3DTN, an implementation of DTN developed by

the Korea Aerospace Research Institute, is

internationally interoperable, interoperable with

overlay networks, and interoperable with multiple

platforms; BP is not yet included. The LTP

implementation of i3DTN, LTPimpl[9], provides an

interoperable LTP implementation and has been

tested with ION. The driving force for developing

i3DTN has been to study DTN as a flight mission

standard. The LTP implementation of i3DTN is

designed to be as lightweight and compact as

possible to be used on the ground and in spacecraft

while still performing the same essential functions as

ION. In particular, the CCSDS Space Packet

protocol can be integrated with LTP to provide a

reliable communication service. i3DTN is written in

C and was developed for the Linux operating system

using the POSIX pthread library. It does not require

any third-party library support; all functions are

self-contained, including script functions.

Trinity College Dublin (TCD) developed an LTP

implementation, LTPlib[10], which can be operated

with the DTN2 implementation[11] of BP.

In 2015, an interoperability test between ION and

a Python LTP library developed by MITRE was

conducted in support of the verification of CCSDS

LTP specification requirements[12].

In 2021, we performed an interoperability test[9]

between ION and i3DTN. In the course of the test,

we discovered that the report segments for a given

LTP ARQ report could be generated in a variety of

different patterns that all complied with the LTP

protocol specification; a compliant LTP receiving

engine needed to be able to handle all of these

patterns to support interoperability. Such flexibility

demanded careful design of the data structures used

to manage the LTP session state. During testing, we

observed that variations in the generation and (as

needed) retransmission of report segments could

significantly impact software performance,

depending on the data structures used to manage the

LTP session state.

Managing the LTP session state can be complex

and challenging because any single LTP report may

comprise multiple report segments (when link

characteristics such as high bit-error rate, high

packet-error rate, or intermittent connectivity result

in high rates of data loss), and those report segments

do not necessarily arrive in order. If report segments

are lost and must be retransmitted, the order of

arrival of the retransmitted segments is entirely

unpredictable.

We performed a detailed investigation as to how

LTP report segments may be generated and

retransmitted. In light of this investigation, we

herein propose some implementation practices,

focusing on the details of generating and handling

report segments so as to enhance LTP software

design and development.

Ⅲ. Introduction to LTP report segment 
and Experimental setup

The basic description of overall LTP operation is

provided by RFC-5326, the LTP specification

document[4,13]. This section summarizes key aspects

of LTP behavior that underlie the design

considerations that are proposed subsequently.

Revisiting aspects of the protocol other than the

report segments is not within the scope of this study.

3.1 Basic operation of LTP report segment
The report segment transfers an accounting of the

received block data to the sender of an LTP block;

this serves as an implicit request for retransmission



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2068

Fig. 2. Test sequences of the experiment

of the data not yet received. The detailed structure

of the LTP report segment is depicted in Fig. 2.

Reception of a data segment marked as a checkpoint

is the event that causes transmission of a report

comprising one or more report segments.

Upon reception of a report segment, the sending

LTP engine must locate the unsuccessfully delivered

data segments and retransmit those data segments.

The data segments that must be transmitted are all

segments for which

∙ the offset is no less than the report segment’s

lower bound;

∙ the extent, the sum of offset and length, is no

more significant than the report segment’s upper

bound; and

∙ the offset and extent do not overlap with the

offset and extent of any reception claim in the

report segment.

There is no prescribed upper limit on the number

of reception claims in a single segment. A report

comprising 20 reception claims could be issued as a

single report segment, two report segments, or 20

report segments.

Upon receiving a report segment, the sending

LTP engine must retransmit the data segments for

which reception was not claimed. The last

retransmitted data segment must contain the report

segment’s serial number and must be marked as a

“checkpoint” requesting transmission of a report on

this retransmission.

3.2 Experimental setup for interoperability 
test

To gather various samples of report segments

with varying numbers of reception claims, we

performed an interoperability test of LTP between

ION and i3DTN implementations and observed the

recorded report segments via Wireshark[14]. ION can

be configured to transmit and receive LTP segments

containing data from BP or other LTP applications;

an example of the latter can be found in the ION

directory tests/ltp-retransmission. The ltpdriver utility

for LTP testing in the DTN protocol suite of ION

can be used for initiating an LTP transaction. The

responding LTP engine can sleep to wait for an LTP

transaction issued by the ltpdriver. The configuration

of the interoperability test between ION and i3DTN

is depicted in Fig. 3. LTPimpl was configured to

emulate severe BER conditions, causing some LTP

segments from i3DTN to ION to be discarded.

For test setup #1, ION’s ltpdriver sent a block of

1,000,000 bytes three times with no BER, requiring

ARQ for varying portions of the block: 1) red part



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2069

Test From To Remark

#1 ION i3DTN BER = 0

#2 i3DTN ION BER = 2×10-5

Table 2. Interoperability test configuration

only (i.e., with ARQ required for the entire block),

2) red part + green part, 3) green part only (i.e., no

ARQ required at all).

For test setup #2, i3DTN transmitted 1,408,576

bytes to ION in all-red blocks, and the max size of

each block was 150,000 bytes (1,200,000 bits). Max

length of each LTP data segment was set to 1,500.

The BER for emulating link error was set to 2 ×

10-5; as a result, more than 20 segments were lost

per session transaction. The test configuration is

summarized in Table 2.

Packet transmissions during the test were

recorded via Wireshark, and each transaction was

observed. Some transactions resulted in

straightforward report segment exchanges, while

others showed extremely complex report segment

exchange patterns.

Upon observing the recorded activity, we

identified several patterns of report segment

exchange; every LTP engine needs to be able to

handle all of those patterns properly so that it does

not enter an unexpected control loop and wait an

unbounded time, causing the transaction of the

session to be aborted.

Notably, it is easy to set up a similar test

environment without i3DTN. As performed in the

previous interoperability test between

i3DTN-LTPimpl and ION[9], ION can be configured

to perform an LTP node-to-node test by itself.

Ⅳ. Experiment results and Considerations

This section presents the results of the

interoperability test performed between ION and

i3DTN and the development of the LTP

implementation design guidelines. Inferences

obtained from the test results are also presented.

4.1 LTP transaction with BER 0
Test configuration #1 provides error-free

conditions in the link between the LTP engines.

When there is no link disruption (i.e., BER is 0), the

operation of report segment generation is

straightforward, and there are no potential

deviations. Fig. 4 shows the simplest example of an

LTP transaction in which no missing data segments

exist. When all data segments are received

successfully, the sole report segment has a single

claim that claims the reception of all data in the

block from offset 0 to the end.

4.2 LTP transaction with BER, not 0
Test configuration #2 examines the link error

status between nodes for an all-red-part transaction.



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2070

The packet loss rate is simulated according to the

configured BER. In this test, BER was set to 2 ×

10-5; thus, a bit error occurs out of approximately

every 50,000 bits. As a result, the affected data

segment must be discarded at data-segment reception

time. In this configuration, more than 20

data-segment losses occur. The test results are

shown in Figs. 5-9. Fig. 5 shows an example of an

LTP transaction when some initial data segments are

lost, and the report segment claims 20 successful

data receptions. As can be seen in Fig. 5 and Fig.

6, 26 reception claims were generated and delivered

to the sender engine by two separate report

segments. In contrast, another implementation might

present these claims in a single segment or in more

than the two report segments created in ION.

During the interoperability test, details of the LTP

operations of ION were monitored to obtain samples

of LTP raw transaction data; this aspect had not

been thoroughly investigated previously. This

investigation revealed that the LTP implementation

of ION operates as follows when it encounters a

retransmission request from a receiving LTP engine.

1) It retransmits in an original form all requested

data segments except the last one. When it

reaches the last data segment, it splits that

segment into two parts, one containing all

original data bytes except the last 1 and the

other containing only the last original data

byte. This ensures that the size of the last data

segment (which must include the checkpoint

and report serial numbers in addition to its

data content) does not exceed the configured

maximum data segment size. This practice

requires the receiving LTP engine to handle

the retransmission of a single original data

segment that is split across two retransmission

data segments. Modifying i3DTN to meet this

requirement is time-consuming, and the

procedure is especially complex when one of

the two retransmission data segments is lost

during transmission. A sending LTP engine

must remember all block reception history

until the current block transmission session

completes successfully. This function must be

reflected in the session state data structure

design and development. A proposed design

approach is described in Section 5.



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2071

Fig. 6. Second report segment to session number 100, which claims 5 items

Fig. 7. One of mid report segment to session number 100 which claims 6 items



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2072

Fig. 8. One of mid data segment retransmission for offset(123000) and length(1499)

Fig. 9. Final report segment to session number 100 which claims fully successful delivery

2) ION holds a maximum of 20 claims in a

report segment. Multiple report segments must

be generated if more than 20 claims are

needed for the report that must be issued on

the reception of a given checkpoint. Handling

a report comprising multiple report segments

is more complex than handling a report

comprising a single report segment because

the sending LTP engine must assess the

overall completion status of the session when

handling each report segment individually.

Reception of multiple report segments in a

session results in multiple retransmissions,

each terminating in a distinct checkpoint; the

sending LTP engine must anticipate potential

data losses in each of those retransmissions.



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2073

Moreover, it is always possible for a

checkpoint data segment to be lost. When this

occurs (as signaled by the expiration of the

checkpoint’s retry timer), the sending LTP

engine must retransmit the checkpoint and

handle the responding report, possibly

resulting in further retransmission. An

important insight gained from this

interoperability testing was that a sending LTP

engine may need to conduct retransmission

activity for multiple LTP block transmission

sessions concurrently.

3) A receiving LTP engine is likewise required to

handle out-of-order and potentially split data

segments from a sending LTP engine. An LTP

engine must be able to concatenate all segment

data, whether positionally adjacent or

misaligned, into a single aligned data block.

This single block may be virtual, comprising

multiple linked storage elements; however, for

performance reasons, it is desirable that the

storage element(s) be as large as possible.

Until a session completes, management of

reception claims information is necessary at

both the sending and receiving LTP engines.

In particular, it is required in order to generate

report segments from a receiving LTP engine.

ION uses a red/black tree algorithm to manage

the ordered, aligned data segments of each

LTP block.

Ⅴ. Full anatomy of LTP report segment 
and proposing handling practice

This section presents a practical mechanism for

LTP report segment handling that enables the

sending LTP engine to cope with various report

segment reception patterns. A simple example of

report segment handling in response to some link

disruptions during the transaction is shown in Fig.

10. This can be the simplest LTP transaction under

link disruption conditions because a single report



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2074

Fig. 11. A more complex example of report segment with BER and multiple retransmissions

segment is generated rather than multiple report

segments and a single retransmission of the

segments in that report’s single claim is enough.

Multiple reception claims are not needed. However,

generally, more complicated patterns may be

expected as shown in Fig. 11, as seen from this

interoperability test results. Owing to multiple

data-segment disruptions, multiple report segments

are issued. Therefore, a sender engine must be able

to handle the separated report segments and respond

to these separately. As shown in Fig. 11, a receiver

engine can choose multiple successful report

segments when issuing successful reception claims

for the retransmitted data segments rather than

issuing a single report segment that claims the

whole area directly; this may be the simplest form

for processing by a sender engine.

5.1 Flexible operation of SDR
We herein refer to the LTP data storage



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2075

Fig. 12. Various ways to make full reception claim

management mechanism as a “simple data recorder”

(SDR). In a given implementation, the SDR

abstraction may entirely take the form of a database,

file, shared memory region, or another storage

medium.

Data are stored in a unit of SDR storage. An

SDR element is allocated to store a data segment

when it is issued at a sending LTP engine, or it

arrives at a receiving LTP engine. We may consider

each SDR element as being configured to have a

fixed capacity as determined by a current network

environment characteristic such as maximum

transmission unit. As described in Section 4, partial

data in an original segmentation can be delivered

separately. For example, 1500 bytes in an original

data segment can be split into two segments

containing 1499 bytes of original data and 1 byte of

original data when retransmitted. When a receiving

LTP engine receives two separate retransmitted data

segments, it is recommended to reassemble the two

separate data segments into a single data segment in

an SDR element. This enables the antecedent SDR

elements to be freed for resource reuse.

An interesting scenario occurs when these

separate but positionally adjacent data segments

arrive out-of-order, as reassembly of the original

data segment cannot be performed until both

fractional segments have arrived.

5.2 Decision of delivery completion status
When a receiving LTP engine receives all of the

data segments from a sending LTP engine, usually

the receiving LTP engine issues a report segment

whose sole reception cites a single reception whose

offset is 0 and whose length is the size of the block

as indicated by the end of the block (EOB) flag in

the ending checkpoint.

However, this is not the only acceptable approach

for issuing a fully successful reception claim. A

report of complete block reception can be split into

multiple report segments, as shown in Fig. 12.

Report segment(s) (a) and (b) in Fig. 12 both claim

successful reception of all data from 0 to 150,000.

However, the technical readiness level for preparing

those two cases is much different. Case (b) requires

sophisticated functionality to interpret and respond

to the separated and partitioned report information.

A sending LTP engine must be able to deduce from

multiple full receptions the reception of the entire

block.

Loss of a checkpoint data segment may present

the most demanding retransmission problem. For

example, a report segment has to be configured

when the first and last data segments are lost during

the first transaction try, as depicted in Fig. 13. The

loss of the first or last data segment can present a

challenging situation for processing requesting

retransmission. Considering the case of loss of the

last checkpoint data-segment block is beyond the

scope of this study. However, it will be an

interesting topic for future investigation.

When the arrival of the retransmitted last

(checkpoint) segment causes the receiving engine to

issue a report noting the successful reception of all

segments of the block except the very first, the

sending engine can reason that the successful

retransmission of solely that first segment will

enable all retransmission resources consumed by this

block to be released immediately and that

retransmission is therefore urgent. As the report



The Journal of Korean Institute of Communications and Information Sciences '22-12 Vol.47 No.12

2076

Fig. 13. A most sophisticated case in a report segment

segment of LTP comprises only positive

acknowledgments, an intermediate report segment

can be configured with a lower bound of either 0 or

1000 when indicating the loss of data segment from

0 to 1000, as clarified by the claims in the report.

As (final length, 0) and (final length, 1000) are both

legitimate expressions according to the LTP

specification document, knowing the missing

unclaimed region before reception of a subsequent

report segment that explicitly identifies the missing

region can be beneficial to a sending engine by

reducing delay in the initiation of the necessary

retransmission.

An alternative mechanism for improving

efficiency in SDR utilization is for the sending

engine to free all the data segments claimed by

report segments immediately upon report segment

reception. When all data segments are fully

delivered, and all reception has been claimed, all

SDR storage allocated to the block would have been

removed; this would inform the sending LTP engine

that all data segments have been delivered

successfully. Thereafter, the sending LTP engine can

close the session. This scheme is beneficial when

the capacity of the SDR is limited. An LTP engine

can remove all claimed data segments at the earliest

possible time, making it easier to locate unclaimed

data segments.

Ⅵ. Conclusion

This paper presents the results of LTP

interoperability testing between ION and i3DTN and

the insights gained from that testing. Error-free and

errored conditions were configured to monitor and

thoroughly analyze LTP segment exchange between

i3DTN and ION. This test revealed that there can be

significant variation in the patterns in which report

segments are generated, and lost data segments are

retransmitted. We concluded that it is challenging to

process report segments in these varying patterns as

enacted by different LTP implementations.

Whenever a new LTP implementation is available, it

is undoubtedly recommended to conduct

interoperability tests to verify its compatibility with

how other implementations handle these reporting

and retransmission patterns.

LTP is vital in DTN technology and DTN

protocol software suite, providing a reliable

convergence layer between the link layer and BP.

LTP session state management is key to the success

of the protocol. Considering the complexity of report

and retransmission handling at the beginning of SDR

design can render interoperability testing

considerably easy and ultimately reduce costs.

The test configuration constructed for this study

was relatively simple; when the interplanetary

network becomes larger and more complex and

there may be multiple paths between the source and

destination, duplicated, truncated, or overlapping

LTP segments may arrive in parallel. Those

challenging segmentation variations can introduce

operational confusion including errors in analysis

and evaluation of the segmentation data. Further

investigation is warranted.

References

[1] F. Warthman, “Delay Tolerant Networks

(DTNs) A Tutorial,” DTN Research Group

Internet Draft–2003, 2003.

[2] A. G. Voyiatzis, “A survey of delay-and

disruption-tolerant networking applications,” J.

Internet Eng., vol. 5, no. 1, pp. 331-344, 2012.

[3] CCSDS, “CCSDS File Delivery Protocol

(CFDP) - Draft Recommended Standard,”

CCSDS 727.0-P-4.1, Pink Book, Tech. Rep.,

2014.



논문 / Structural Considerations for Generating and Handling LTP Report Segments from an Interoperability Testing

2077

[4] M. Ramadas, S. C. Burleigh, and S. Farrell,

“RFC 5326, Licklider Transmission Protocol

Specification,” IRTF DTN Research Group,

2008. [Online] Available: https://tools.ietf.org/

html/rfc5326

[5] CCSDS, “Licklider Transmission Protocol

(LTP) for CCSDS,” CCDS 734.1-B-1, Blue

Book, Tech. Rep., 2015.

[6] S. Burleigh, “Interplanetary overlay network:

An implementation of the DTN bundle

protocol,” in 4th IEEE CCNC 2007, pp.

222-226, 2007.

(http://dx.doi.org/10.1109/CCNC.2007.51)

[7] NASA, “Interplanetary Overlay Network

(ION) Design and Operation,” ver 3.7.2, JPL

D-48259, Retrieved from https://sourceforge.n

et/projects/ion-dtn/

[8] F. Flentge, ESA Operational Ground CFDP &

DTN Implementations(2019), Retrieved from

https://indico.esa.int/event/323/contributions/50

30/attachments/3729/5182/12.25a_-_DTN__CF

DP.pdf

[9] C. H. Koo, “An implementation of LTP

protocol opening a gate to space

communication network from space packet

communication,” J. KICS, vol. 46, no. 12, pp.

2134-2143, 2021.

(http://dx.doi.org/10.7840/kics.2021.46.12.2134)

[10] TCD’s LTPlib, https://down.dsg.cs.tcd.ie/ltplib/

[11] DTN2, https://github.com/delay-tolerant-networ

king/DTN2

[12] CCSDS, Licklider Transmission Protocol

(LTP) for CCSDS Interoperability Test Report,

2015. [Online] Available: https://cwe.ccsds.

org/cesg/docs/Forms/DispForm.aspx?ID=2664

[13] N. Ansell, Delay and Disruption Tolerant

Networks ; Interplanetary and Earth-Bound –

Architecture, Protocols, and Applications, Ch

11. Licklider Transmission Protocol (LTP),

CRC Press, pp. 345-400, 2019.

(http://dx.doi.org/10.1201/9781315271156)

[14] Wireshark, www.wireshark.org

구 철 회 (Cheol Hea Koo)

1997년 2월 :충남대학교 전자

공학과 졸업

1999년 2월 :충남대학교 의용

전자공학 석사

2021년 2월 :충남대학교 컴퓨

터공학과 박사

2002년 3월~현재 :한국항공우

주연구원 책임연구원

<관심분야> 내장형 소프트웨어, 위성 통신, 심우주

통신, CFDP, 우주인터넷

[ORCID:0000-0002-7180-1476]

스 캇 (Scott C. Burleigh)

(전)Caltech/JPL Principal

Engineer

현재 : IPNSIG vice Chair

<관심분야> 태양계인터넷, 우

주인터넷, CFDP, LTP, BP

[ORCID:0000-0003-3768-5413]


